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1. Introduction 
he Message-Passing Interface or MPI is a library of functions and macros that can be 
used in C, FORTRAN, and C++ programs, As its name implies, MPI is intended for use 
in programs that exploit the existence of multiple processors by message-passing. 

MPI was developed in 1993-1994 by a group of researchers from industry, government, and 
academia. As such, it is one of the first standards for programming parallel processors, and it is 
the first that is based on message-passing. 

In 1995, A User’s Guide to MPI has been written by Dr Peter S. Pacheco. This is a brief tutorial 
introduction to some of the more important feature of the MPI for C programmers. It is a nicely 
written documentation and users in our university find it very concise and easy to read.  

However, many users of parallel computer are in the scientific and engineers community and 
most of them use FORTRAN as their  primary computer language. Most of them don’t use C 
language proficiently. This situation occurs very frequently in Hong Kong. A a result, the “A 
User’s Guide to MPI”  is translated to this guide in Fortran to address for the need of scientific 
programmers. 

Acknowledgments. I gratefully acknowledge Dr Peter S. Pacheco for the use of C version of the 
user guide on which this guide is based. I would also gratefully thanks to the Computer Centre of 
the University of Hong Kong for their human resource support of this work. And I also thanks 
to all the research institution which supported the original work by Dr Pacheco. 
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2. Greetings ! 
The first program that most of us saw was the “Hello, world!” program in most of introductory 
programming books. It simply prints the message “Hello, world!”. A variant that makes some use 
of multiple processes is to have each process send a greeting to another process. 

In MPI, the process involved in the execution of a parallel program are identified by a sequence 
of non-negative integers. If there are p processes executing a program, they will have ranks 0, 1,..., 
p-1. The following program has each process other than 0 send a message to process 0, and 
process 0 prints out the messages it received. 

      program greetings 
      include 'mpif.h' 
 
      integer my_rank 
      integer p 
      integer source 
      integer dest 
      integer tag 
      character*100 message 
      character*10 digit_string 
      integer size 
      integer status(MPI_STATUS_SIZE) 
      integer ierr 
      call MPI_Init(ierr) 
      call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, i err) 
      call MPI_Comm_size(MPI_COMM_WORLD, p, ierr) 
      if (my_rank  .NE.  0) then 
          1write(digit_string,FMT="(I3)") my_rank 
          message = 'Greetings from process ' 
     +    // 2 trim(digit_string) // ' !' 
          dest = 0 
          tag = 0 
          call MPI_Send(message, len_trim(message) 3,    
     +    MPI_CHARACTER, dest, tag, MPI_COMM_WORLD,  ierr) 
      else 
          do source = 1, p-1 
              tag = 0 
              call MPI_Recv(message, 100, MPI_CHARA CTER, 

                                                                        

1 This line changes the binary format (integer) my_rank  to string format digit_string . 

2 // is concatenation operator which combines two strings to form a third, composite string. E.g. ‘This ‘ // ‘is ‘ 
// ‘a ‘ // ‘dog.’ is equal to the string ‘This is a dog.’  

3 LEN_TRIM(STRING) returns the length of the character argument without counting trailing blank. 
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     +        source, tag, MPI_COMM_WORLD, status, ierr) 
              write(6,FMT="(A)") message 
          enddo 
       endif 
  
      call MPI_Finalize(ierr) 
      end program greetings 
 
The details of compiling and executing this program is in  chapter  8. 

When the program is compiled and run with two processes, the output should be 

Greetings from process 1! 
 
If it’s run with four processes, the output should be 

Greetings from process 1! 
Greetings from process 2! 
Greetings from process 3! 
 
Although the details of what happens when the program is executed vary from machine to 
machine, the essentials are the same on all machines. Provided we run one process on each 
processor. 

1. The user issues a directive to the operating system which has the effect of placing a 
copy of the executable program on each processor. 

2. Each processor begins execution of its copy of the executable. 

3. Different processes can execute different statements by branching within the 
program. Typically the branching will be based on process ranks. 

So the Greetings program uses the Single Program Multiple Data or SPMD paradigm. That is, we 
obtain the effect of different programs running on different processors by taking branches within a 
single program on the basis of process rank : the statements executed by process 0 are different 
from those executed by the other processes, even though all processes are running the same 
program. This is the most commonly used method for writing MIMD programs, and we’ll use it 
exclusively in this Guide. 

2.1 General MPI Programs 

Every MPI program must contain the preprecessor directive 

      include ‘mpif.h’ 
 
This file, mpif.h, contains the definitions, macros and function prototypes necessary for 
compiling an MPI program.  
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Before any other MPI functions can be called, the function MPI_Init must be called, and it 
should only be called once. Fortran MPI routines have an IERROR argument - this contains the 
error code. After a program has finished using MPI library, it must call MPI_Finialize. This 
cleans up any “unfinished business” left by MPI - e.g. pending receives that were never 
completed. So a typical MPI program has the following layout. 

          . 
          . 
          . 
      include 'mpif.h' 
          . 
          . 
          . 
      call MPI_Init(ierr) 
          . 
          . 
          . 
      call MPI_Finialize(ierr) 
          . 
          . 
          . 
      end program  
 

2.2 Finding out About the Rest of the World 

MPI provides the function MPI_Comm_rank, which returns the rank of a process in its second 
in its second argument, Its syntax is 

      CALL MPI_COMM_RANK(COMM, RANK, IERROR) 
      INTEGER COMM, RANK, IERROR 
 
The first argument is a communicator. Essentially a communicator is a collection of processes that 
can send message to each other. For basic programs, the only communicator needed is 
MPI_COMM_WORLD. It is predefined in MPI and consists of all the processes running when 
program execution begins. 

Many of the constructs in our programs also depend on the number of processes executing the 
program. So MPI provides the functions MPI_Comm_size for determining this. Its first 
argument is a communicator. It returns the number of processes in a communicator in its second 
argument. Its syntax is 

      CALL MPI_COMM_SIZE(COMM, P, IERROR) 
      INTEGER COMM, P, IERROR 
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2.3 Message : Data + Envelope 

The actual message-passing in our program is carried out by the MPI functions MPI_Send and 
MPI_Recv. The first command sends a message to a designated process. The second receives a 
message from a process. These are the most basic message-passing commands in MPI. In order 
for the message to be successfully communicated the system must append some information to 
the data that the application program wishes to transmit. This additional information forms the 
envelope of the message. In MPI it contains the following information. 

1. The rank of the receiver. 

2. The rank of the sender. 

3. A tag. 

4. A communicator. 

These items can be used by the receiver to distinguish among incoming messages. The source 
argument can be used to distinguish messages received from different processes. The tag is a user-
specified integer that can be used to distinguish messages received form a single process. For 
example, suppose process A is sending two messages to process B; both messages contains a 
single real number. One of the real number is to be used in a calculation, while the other is to be 
printed. In order to determine which is which, A can use different tags for the two messages. If B 
uses the same two tags in the corresponding receives, when it receives the messages, it will 
“know” what to do with them. MPI guarantees that the integers 0-32767 can be used as tags. 
Most implementations allow much larger values. 

As we noted above, a communicator is basically a collection of processes that can send messages 
to each other. When two processes are communicating using MPI_Send and MPI_Recv, its 
importance arises when separate modules of a program have been written independently of each 
other. For example, suppose we wish to solve a system of differential equations, and, in the 
course of solving the system, we need to solve a system of linear equation. Rather than writing the 
linear system solver from scratch, we might want to use a library of functions for solving linear 
systems that was written by someone else and that has been highly optimized for the system we’re 
using. How do we avoid confusing the messages we send from process A to process B with those 
sent by the library functions ? Before the advent of communicators, we would probably have to 
partition the set of valid tags, setting aside some of them for exclusive use by the library functions. 
This is tedious and it will cause problems if we try to run our program on another system : the 
other system’s linear solver may not (probably won’t) require the same set of tags. With the 
advent of communicators, we simply create a communicator that can be used exclusively by the 
linear solver, and pass it as an argument in calls to the solver. We’ll discuss the details of this later. 
For now, we can get away with using the predefined communicator MPI_COMM_WORLD. It 
consists of all the processes running the program when execution begins. 
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2.4 MPI_Send and MPI_Recv 

To summarize, let’s detail the syntax of MPI_Send and MPI_Recv. 

      MPI_SEND( MESSAGE, COUNT, DATATYPE, DEST, TAG , COMM, IERROR) 
          <TYPE> MESSAGE(*) 
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM,  IERROR 
 
      MPI_RECV( MESSAGE, COUNT, DATATYPE, SOURCE, T AG,    
          COMM, STATUS, IERROR) 
          <TYPE> MESSAGE(*) 
          INTEGER COUNT, DATATYPE, DEST, TAG, COMM  
          INTEGER STATUS(MPI_STATUS_SIZE),IERROR 
 
Most MPI functions stores an integer error code in the argument ierror. However, we will ignore 
these return values in most cases. 

The contents of the message are stored in a block of memory referenced by the argument 
message. The next two arguments, count and datatype, allow the system to identify the end 
of the message : it contains a sequence of count values, each having MPI type datatype. This 
type is not a Fortran type, although most of the predefined types correspond Fortran types. The 
predefined MPI types and the corresponding FORTRAN types (if they exist) are listed in the 
following table. 

MPI datatype FORTRAN datatype 

MPI_INTEGER INTEGER 

MPI_REAL REAL 

MPI_DOUBLE_PRECISION DOUBLE PRECISION 

MPI_COMPLEX COMPLEX 

MPI_LOGICAL LOGICAL 

MPI_CHARACTER CHARACTER(1) 

MPI_BYTE  

MPI_PACKED  

 

The last two types, MPI_BYTE and MPI_PACKED, don’t correspond to standard Fortran 
types. The MPI_BYTE type can be used if you wish to force the system to perform no 
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conversion between different data representations ( e.g. on a heterogeneous network of 
workstations using different representations of data). We’ll discuss the type MPI_PACKED later. 

Note that the amount of space allocated for the receiving buffer does not have to match the exact 
amount of space in the message being received. For example, when our program is run, the size 
of the message that process 1 sends, len_trim(message), is 28 characters, but process 0 receives 
the message in a buffer that has storage for 100 characters. Thsi makes sense. In general, the 
receiving process may not know the exact size of the message being sent. So MPI allows a 
message to be received as long as there is sufficient storage allocated. If there isn’t sufficient 
storage, an overflow error occurs [4]. 

The arguments dest and source are, respectively, the ranks of the receiving and the sending 
processes. MPI allows source to be “wildcard”. There is a predefined constant 
MPI_ANY_SOURCE that can be used if a process is ready to receive a message from any 
sending process rather than a particular sending process. There is not a wildcard for dest. 

As we noted erlier, MPI has two mechanisms specifically designed for “partitioning the message 
space” : tags and communicators. The arguments tag and comm are, respectively, the tag and 
communicator. The tag is an integer, and for now, our only communicator is 
MPI_COMM_WORLD, which, as we noted earlier is predefined on all MPI systems and 
consists of all the processes running when execution of the program begins. There is a wildcard, 
MPI_ANY_TAG, that MPI_Recv can use for the tag. There is no wildcard for the 
communicator. In other words, in order for process A to send a message to process B, the 
argument comm that A uses in MPI_Send must be identical to the argument that B uses in 
MPI_Recv. 

The last argument of MPI_Recv, status, returns information on the data that was actually 
received. It references a array with two elements - one for the source and one for the tags. So if, 
for example, the source of the receive was MPI_ANY_SOURCE, then status will contain the 
rank of the process that sent the message. 
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3. An Application 
Now that we know how to send message with MPI, let’s write a program that uses message-
passing to calculate a definite integral with the trapezoid rule. 

3.1 Serial program 

Recall that the trapezoid rule estimates f x dx
a

b

( )∫  by dividing the interval [a,b] into n segments of 

equal and calculating the following sum. 

h f x f x f xn i

i

n

[ ( ) / ( ) / ( )].0

1

1

2 2+ +
=

−

∑  

Here, h = (b - a)/n, and xi = a + ih, i = 0,...,n. 

By putting f(x) into a subprogram, we can write a serial program for calculating an integral using 
the trapezoid rule. 

C serial.f -- calculate definite integral using tra pezoidal  
C             rule. 
C 
C The function f(x) is hardwired. 
C Input: a, b, n. 
C Output: estimate of integral from a to b of f(x) 
C    using n trapezoids. 
 
      PROGRAM serial 
      IMPLICIT NONE 4 
      real  integral      
      real  a 
      real  b 
                                                                        

4 In Fortran, if you omit to declare a variable it will not normally lead to an error when it is first used; instead it will be 
implicitly declared to be an integer if the first letter of its name lies in the range I-N, and will be implicitly declared to be a 
real variable otherwise. This is extremely dangerous, and must be avoided at all cost.  

Fortunately, Fortran 90 provides the means to avoid this problem by instructing the compiler that all variables must be 
declared before use, and that implicit declaration is not to be allowed. This is achieved by including the statement 

    IMPLICIT NONE 

as the first statement after the initial PROGRAM, SUBROUTINE or FUNCTION statement. 

It is extremely important that this statement appears at the beginning of every program in order that implicit declarations of variables are 
forbidden. There are a great many stories, some apocryphal and some true, about major catastrophes in Fortran programs that 
would never have happened had implicit declaration not masked a programming error.  
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      integer  n 
      real  h             
      real  x 
      integer i 
 
      real f     
      external f 
 
      print *, 'Enter a, b, and n' 
      read *,  a,  b,  n 
 
      h = (b-a)/n 
      integral = (f(a) + f(b))/2.0 
      x = a 
      do i = 1 , n-1 
          x = x + h 
          integral = integral + f(x) 
      enddo   
      integral =  integral*h 
 
      print *,'With n =', n,' trapezoids, our estim ate' 
      print *,'of the integral from ', a, ' to ',b,  ' = ' ,  
     +integral 
      end 
 
C************************************************** **** 
      real function f(x) 
      IMPLICIT NONE 
      real x 
C  Calculate f(x).  
 
      f = x*x 
      return 
      end 
C************************************************** **** 
 
 

3.2 Parallelizing the Trapezoid Rule 

One approach to parallelizing this program is to simply split the interval [a,b] up among the 
processes, and each process can estimate the integral of f(x) over its subinterval. In order to 
estimate the total integral, the processes’ local calculations are added. 

Suppose there are p processes and n trapezoids, and, in order to simplify the discussion, also 
suppose that n is evenly divisible by p. Then it is natural for the first process to calculate the area 
of the first n/p trapezoids, the second process to calculate the area of the next n/p, etc. So process 
q will estimate the integral over the interval 
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[ , ( ) ]a q
nh

p
a q

nh

p
+ + + 1  

Thus each process needs the following information. 

• The number of processes, p. 

• Its rank. 

• The entire interval of integration, [a,b]. 

• The number of subintervals, n. 

Recall that the first two items can be found by calling the MPI functions MPI_Comm_size and 
MPI_Comm_Rank. The latter two items should probably be input by the user. But this can 
raise some difficult problems. So for our first attempt at calculating the integral, let’s “hardwire” 
these values by simply setting their values with assignment statements. 

A straightforward approach to summing the processes’ individual calculations is to have each 
process send its local calculation to process 0 and have process 0 do the final addition. 

With these assumptions we can write a parallel trapezoid rule program. 

c  trap.f -- Parallel Trapezoidal Rule, first versi on 
c  
c  Input: None. 
c  Output:  Estimate of the integral from a to b of  f(x)  
c     using the trapezoidal rule and n trapezoids. 
c  
c  Algorithm: 
c     1.  Each process calculates "its" interval of   
c         integration. 
c     2.  Each process estimates the integral of f( x) 
c         over its interval using the trapezoidal r ule. 
c     3a. Each process != 0 sends its integral to 0 . 
c     3b. Process 0 sums the calculations received from 
c         the individual processes and prints the r esult. 
c  
c  Note:  f(x), a, b, and n are all hardwired. 
c 
 
      program trapezoidal 
c 
      IMPLICIT NONE 
      include 'mpif.h' 
c 
      integer   my_rank  ! My process rank. 
      integer   p        ! The number of processes.  
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      real      a        ! Left endpoint. 
      real      b        ! Right endpoint. 
      integer   n        ! Number of trapezoids. 
      real      h        ! Trapezoid base length. 
      real      local_a  ! Left endpoint for my pro cess. 
      real      local_b  ! Right endpoint my proces s. 
      integer   local_n  ! Number of trapezoids for  my  
                         ! calculation. 
      real      integral ! Integral over my interva l. 
      real      total    ! Total integral.  
      integer   source   ! Process sending integal.  
      integer   dest     ! All messages go to 0. 
      integer   tag      
      integer   status(MPI_STATUS_SIZE) 
      integer   ierr 
 
      real      Trap 
 
      data a, b, n, dest, tag /0.0, 1.0, 1024, 0, 5 0/ 
 
C  Let the system do what it needs to start up MPI.   
      call MPI_INIT(ierr) 
 
C  Get my process rank. 
      call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, i err) 
 
C  Find out how many processes are being used. 
      call MPI_COMM_SIZE(MPI_COMM_WORLD, p, ierr) 
 
  
      h = (b-a)/n        ! h is the same for all pr ocesses. 
      local_n = n/p      ! So is the number of trap ezoids. 
 
C  Length of each process' interval of integration = local_n*h. 
C  So my interval starts at :  
      local_a = a + my_rank*local_n*h 
      local_b = local_a + local_n*h 
      integral = Trap(local_a, local_b, local_n, h)  
 
C  Add up the integals calculated by each process. 
      if (my_rank .EQ. 0) then 
          total = integral 
          do source = 1, p-1 
              call MPI_RECV(integral, 1, MPI_REAL, source, tag,  
     +              MPI_COMM_WORLD, status, ierr) 
              total = total + integral 
          enddo  
      else 
          call MPI_SEND(integral, 1, MPI_REAL, dest ,  
     +          tag, MPI_COMM_WORLD, ierr) 
      endif 
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C  Print the result. 
      if (my_rank .EQ. 0) then 
            write(6,200) n 
 200        format(' ','With n = ',I4,' trapezoids,  our estimate') 
            write(6,300) a, b, total 
 300        format(' ','of the integral from ',f6.2 ,' to ',f6.2, 
     +             ' = ',f11.5) 
      endif 
 
C       Shut down MPI. 
      call MPI_FINALIZE(ierr)  
      end program trapezoidal 
 
 
      real function Trap(local_a, local_b, local_n,  h) 
      IMPLICIT NONE 
      real     local_a 
      real     local_b 
      integer  local_n 
      real     h  
      real     integral    ! Store result in intega l. 
      real     x  
      real     i  
       
      real     f 
 
      integral = (f(local_a) + f(local_b))/2.0  
      x = local_a  
      do i = 1, local_n - 1 
          x = x + h  
     integral = integral + f(x)  
      enddo   
      integal = integral*h  
      Trap = integral 
      return 
      end 
 
  
      real function f(x) 
      IMPLICIT NONE 
      real x 
 
      f = x*x 
      end 
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Observe that this program also uses the SPMD paradigm. Even though process 0 executes an 
essentially different set of commands from the remaining processes, it still runs the same 
program. The different commands are executed by branching based on the process rank. 

3.3 I/O on Parallel Processors 

One obvious problem with our program is its lack of generality : the data, a, b, and n, are 
hardwired. The user should be able to enter these values during execution. Let’s look more 
carefully at the problem of I/O on parallel machines. 

In our greetings and trapezoid programs we assumed that process 0 could write to standard 
output ( the terminal screen). Most parallel processors provide this much I/O. In fact, most 
parallel processors allow all processors to both read from standard input and write to standard 
output. However difficult arise when several processes are simultaneously trying to execute I/O 
functions. In order to understand this, let’s look at an example. 

Suppose we modify the trapezoid program so that each process attempts to read the values a, b, 
and n by adding the statement 

      read *, a , b, n 
 
Suppose also that we run the program with two processes and the user types in  

       0 1 1024 
 
What happen ? Do both processes get the data ? Does only one ? Or, even worse, does (say) 
process 0 get the 0 and 1, while process 1 gets the 1024 ? If all the processes get the data, what 
happens when we write a program, where we want process 0 gets the data, what happens to the 
others ? Is it even reasonable to have multiple processes reading data from a single terminal ? 

On the other hand, what happens if several processes attempt to simultaneously write data to the 
terminal screen. Does the data from process 0 get printed first, then the data form process 1, etc ? 
Or does the data appear in some random order ? Or, even worse, does the data from the different 
processes get all mixed up - say, half a line from 0, two characters from 1, 3 characters from 0, 
two lines from 2, etc ? 

The standard I/O commands available in Fortran (and most other languages) don’t provide 
simple solutions to these problems, and I/O continues to be the subject of considerable research 
in the parallel processing community. So let’s look at some not so simple solutions to these 
problems. 

Thus far, we have assumed that process 0 can at least write to standard output. We will also 
assume that it can read from standard input. In most cases, we will only assume that process 0 can 
do I/O. It should be noted that this is a very weak assumption, since, as we noted most parallel 
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machines allow multiple processes to carry out I/O.5 You might want to ask your local expert 
whether there are any restrictions on which processes can do I/O.6 

If only process 0 can do I/O, then we need for process 0 to send the user input to the other 
processes. This is readily accomplished with a short I/O function that uses MPI_Send and 
MPI_Recv. 

C ************************************************* ****************   
C  Function Get_data 
C    Reads in the user input a, b, and n. 
C    Input arguments: 
C        1.  integer my_rank:  rank of current proc ess. 
C        2.  integer p:  number of processes. 
C    Output parameters: 
C        1.  real a:  left endpoint a. 
C        2.  real b:  right endpoint b. 
C        3.  integer n:  number of trapezoids. 
C    Algorithm: 
C        1.  Process 0 prompts user for input and 
C            reads in the values. 
C        2.  Process 0 sends input values to other 
C            processes. 
C    
      subroutine Get_data(a, b, n, my_rank, p) 
      IMPLICIT NONE 
      real  a      
      real  b  
      integer    n     
      integer    my_rank    
      integer    p 
      INCLUDE 'mpif.h' 
C 
      integer source  
      integer dest             
      integer tag 
      integer   status(MPI_STATUS_SIZE) 
      integer   ierr 
      data source /0/ 
C 
      if  (my_rank == 7 0)  then 
         print *, 'Enter a, b and n' 
                                                                        

5 The MPI function MPI_Attr_get  can determine the rank of a process that can carry out the usual I/O functions. See 
[4]. But it is not important in our SP2. 

6 In our SP2, this is controlled by the environment variable MP_STDINMODE. By default, all processes receive the same 
input data from the keyboard ( or standard input ). See [8] for detail. 

7 == means exactly the same as .EQ.  
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         read *, a, b, n 
C 
C 
          do dest = 1 ,  p-1   
       tag = 0 
              call MPI_SEND(a, 1, MPI_REAL , dest, tag, 
     +                 MPI_COMM_WORLD, ierr ) 
              tag = 1 
              call MPI_SEND(b, 1, MPI_REAL , dest, tag, 
     +                 MPI_COMM_WORLD, ierr ) 
       tag = 2 
              call MPI_SEND(n, 1, MPI_INTEGER, dest , 
     +                 tag, MPI_COMM_WORLD, ierr ) 
          enddo 
      else   
          tag = 0 
          call MPI_RECV(a, 1, MPI_REAL , source, ta g, 
     +          MPI_COMM_WORLD,  status, ierr ) 
          tag = 1 
          call MPI_RECV(b, 1, MPI_REAL , source, ta g, 
     +          MPI_COMM_WORLD,  status, ierr ) 
          tag = 2 
          call MPI_RECV(n, 1, MPI_INTEGER, source, tag, 
     +              MPI_COMM_WORLD,  status, ierr )  
      endif 
      return 
      end 
C 
C 
C 
*************************************************** ***************   
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4. Collective Communication 
There are probably a few things in the trapezoid rule program that we can improve on. For 
example, there is the I/O issue. There are also a couple of problems we haven’t discussed yet. 
Let’s look at what happens when the program is run with eight processes. 

All the processes begin executing the program ( more or less ) simulataneously. However, after 
carrying out the basic set-up tasks ( calls to MPI_Init, MPI_Comm_size, and MPI_Comm_rank), 
processes 1-7 are idle while process 0 collects the input data. We don’t want to have idle 
processes, but in view of our restrictions on which processes can read input data, the higher rank 
processes must continue to wait while 0 sends the nput data to the lower rank processes. This 
isn’t just an I/O issue. Notice that there is a similar inefficiency at the end of the program, when 
process 0 does all the work of collecting andd adding the local integrals. 

Of course, this is highly undesirable : the main point of parallel processing is to get multiple 
processes to collaborate on solving a problem. If one of the processes is doing most of the work, 
we might as well use a conventional, single-processor machine. 

4.1 Tree-Structured Communication 

Let’s try to improve our code. We’ll begin by focusing on the distribution of the input data. How 
can we divide the work more evenly among the processes ? A natural solution is to imagine that 
we have a tree of processes, with 0 at the root. 

During the first stage of data distribution, 0 sends the data to (say) 4. During the next stage, 0 
sends the data to 2, while 4 sends it to 6. During the last stage, 0 sends to 1, while 2 sends to 3, 4 
sends to 5, and 6 sends to 7. (see figure 4.1) So we have reduced our input distribution loop from 
7 stages to 3 stages. More generally, if we have p processes, this procedure allows us to distribute 

the input data in  log ( )2 p 8stages, rather than p-1 stages, which, if p is large, is a huge savings. 

                                                                        

8 The notation  x denotes the smallest whole number grater than or equal to x. 
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Figure 1 Processors configured as a tree 

 

In order to modify the Get_data function to use a tree-structured distribution scheme, we need to 

introduce a loop with  log ( )2 p stages. In order to implement the loop, each process needs to 

calculate at each stage. 

• whether it receives, and, if so, the source ; and 

• whether it sends, and, if so, the destination. 

As you can probably guess, these calculations can be a bit complicated, especially since there is no 
canonical choice of ordering. In our example, we chose : 

0sends to 4. 

0 sends to 2, 4 sends to 6. 

0 sends to 1, 2 sends to 3, 4 sends to 5, 6 sends to 7. 

We might also have chosen ( for example ) : 

0 sends to 1. 
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0 sends to 2, 1 sends to 3. 

0 sends to 4, 1 sends to 5, 2 sends to 6, 3 sends to 7. 

Indeed, unless we know something about the underlying topology of our machine, we can’t really 
decide which scheme is better. 

So ideally we would prefer to use a function that has been specifically tailored to the machine 
we’re using so that we won’t have to worry about all these tedious details, and we won’t have to 
modify our code every time we change machines. As you may have guess, MPI provides such a 
function. 

4.2 Broadcast 

A communication pattern that involves all the processes in a communicator is a collective 
communication. As a consequence, a collective communication usually involves more than two 
processes. A broadcast is a collective communication in which a single process sends the same data 
top every process. In MPI the function for broadcasting data is MPI_Bcast : 

MPI_BCAST( BUFFER, COUNT, DATATYPE, ROOT, COMM, IER ROR ) 
<type> BUFFER(*) 
INTEGER COUNT,  DATA, ROOT, COMM, IERROR 
 
It simply sends a copy of the data in BUFFER on process ROOT to each process in the 
communicator COMM. IT should be called by all the processes in the communicator with the 
same arguments for ROOT and COMM. Hence a broadcast message cannot be received with 
MPI_Recv. The parameters COUNT and DATATYPE have the same function that they have in 
MPI_Send and MP_Recv : they specify the extent of the message. However, unlike the point-to-
point functions, MPI insists that in collective communication COUNT and DATATYPE be the 
same on all the processes in the communicator [4]. The reason for this is that in some collective 
operations (see below), a single process will receive data from many other processes, and in order 
for a program to determine how much data has been received, it would need an entire array of 
return statuses. 

We can rewrite the Get_data function using MPI_Bcast as follows. 

  
      subroutine Get_data2(a, b, n, my_rank) 
      real  a      
      real  b      
      integer   n      
      integer   my_rank 
      integer ierr   
      include 'mpif.h' 
C 
C 
       if (my_rank .EQ. 0) then 
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          print *, 'Enter a, b, and n' 
   read *, a, b, n 
       endif 
C 
      call MPI_BCAST(a, 1, MPI_REAL , 0, MPI_COMM_W ORLD, ierr ) 
      call MPI_BCAST(b, 1, MPI_REAL , 0, MPI_COMM_W ORLD, ierr ) 
      call MPI_BCAST(n, 1, MPI_INTEGER, 0, MPI_COMM _WORLD, ierr ) 
      end subroutine Get_data2 
C 
C 
C 
*************************************************** *************** 
 

Certainly this version of Get_data is much more compact and readily comprehensible than the 
original, and if MPI_Bcast has been optimized for your system, it will also be a good deal faster. 

4.3 Reduce 

In the trapezoid rule program after the input phase, every processor executes essentially the same 
commands until the final summation phase. So unless our function f(x) is fairly complicated ( i.e., 
it requires considerably more work to evaluate over certain parts of [a,b]), this part of the program 
distributes the work equally among the processors. As we have already noted, this is not the case 
with the final summation phase, when, once again, process 0 gets a disproportionate amount of 
the work. However, you have probably already noticed that by reversing the arrows in figure 4.1, 
we can use the same idea we used in section 4.1. That is, we can distribute the work of calculating 
the sum among the processors as follows.  

1. (a) 1 sends to 0, 3 sends to 2, 5 sends to 4, 7 sends to 6. 

 (b) 0 adds its integral to that of 1, 2 adds its integral to that of 3, etc. 

2.  (a) 2 sends to 0, 6 sends to 4. 

(b) 0 adds, 4 adds. 

3. (a) 4 sends to 0. 

(b)  0 adds. 

Of course, we run into the same question that occurred when we were writing our own broadcast 
: is this tree structure making optimal use of the topology of our machine ? Once again, we have 
to answer that this depends on the machine. So, as before, we should let MPI do the work, by 
using an optimized function. 

The “global sum” that we wish to calculate is an example of a general class of collective 
communication operations called reduction operations. In a global reduction operation, all the 
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processes ( in a communicator ) contribute data which is combined using a binary operation. 
Typical binary operations are addition, max, min, logical and, etc. The MPI function for 
performing a reduction operation is  

MPI_Reduce(OPERAND, RESULT, COUNT, DATATYEP, OP, RO OT, COMM, 
IERROR)  
<type> OPERAND(*), RESULT(*) 
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR 
 
MPI_Reduce combines the operands stored in OPERAND using operation OP and stores the 
result in RESULT on process ROOT. Both OPERAND and RESULT refer to COUNT 
memory locations with type DATATYPE. MPI_Reduce must be called by all processes in the 
communicator COMM, and COUNT, DATATYPE, and OP must be the same on each process. 

The argument OP can take on one of the following predefined values. 

Operation Name Meaning 

MPI_MAX Maximum 

MPI_MIN Minimum 

MPI_SUM Sum 

MPI_PROD Product 

MPI_LAND Logical And 

MPI_BAND Bitwise And 

MPI_LOR Logical Or 

MPI_BOR Bitwist Or 

MPI_LXOR Logical Exclusive Or 

MPI_BXOR Bitwise Exclusive Or 

MPI_MAXLOC Maximum and Location of Maximum 

MPI_MINLOC Minimum and Location of Minimum 

It is also possible to define additional operations. For details see [4]. 

As an example, let’s rewrite the last few lines of the trapezoid rule program. 

C Add up the integrals calculated by each process. 
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      MPI_Reduce( INTEGRAL, TOTAL, 1, MPI_REAL, MPI _SUM, 0,  
     +            MPI_COMM_WORLD, ierr) 
C Print the result. 
 
Note that each processor calls MPI_Reduce with the same arguments. In particular, even though 
total only has significance on process 0, each process must supply an argument. 

4.4 Other Collective Communication 
Functions 

MPI supplies many other collective communication functions. We briefly enumerate some of 
these here. For full details, see [4]. 

• MPI_Barrier( COMM, IERROR) 
INTEGER COMM, IERROR 

 
MPI_Barrier provides a mechanism for synchronizing all the processes in the communicator 
comm. Each process blocks (i.e., pauses) until every process in comm has called MPI_Barrier. 

MPI_Gather(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BU F, RECV_COUNT, 
RECV_TYPE, ROOT, COMM, IERROR ) 
<type>SEND_BUF(*), RECV_BUF(*) 
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR 
 

 

Each process in comm sends the contents of send_buf to process with rank root. The rpocess 
root concatenates the received data in process rank order in recv_buf. That is, the data from 
process 0 is followed by the data from process 1, which is followed by the data from process 2, 
etc. The recv arguments are significant only on the process with rank root. The argument 
recv_count indicates the number of items received from each process - not the total number 
received. 

MPI_Scatter(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_B UF, RECV_COUNT, 
RECV_TYPE, ROOT, COMM, IERROR ) 
<type>SEND_BUF(*), RECV_BUF(*) 
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR 
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The process with rank root distributes the contents of send_buf among the processes. The 
contents of send_buf are split into p segments each consisting of send_count items. The first 
segment goes to process 0, the second to process 1, etc. The send arguments are significant only 
on process root. 

MPI_Allgather(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV _BUF, 
RECV_COUNT, RECV_TYPE, ROOT, COMM, IERROR ) 
<type>SEND_BUF(*), RECV_BUF(*) 
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR 
 
 

MPI_Allgather gathers the contents of each send_buf on each process. Its effect is the same as if 
there were a sequence of p calls to MPI_Gather, each of which has a different process acting as 
root. 

MPI_AllReduce(OPERAND, RESULT, COUNT, DATATYPE, OP,  COMM, IERROR ) 
<type>OPERAND(*), RESULT(*) 
INTEGER COUNT, DATATYPE, OP ,COMM,IERROR 
 
MPI_Allreduce stores the result of the reduce operation OP in each process’ result buffer. 
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5. Grouping Data for 
Communication 
With current generation machines sending a message is an expensive operation. So as a rule of 
thumb, the fewer messages sent, the better the overall performance of the program. However, in  
each of our trapezoid rule programs, when we distributed the input data, we sent a, b and n in 
separate messages - whether we used MPI_Send and MPI_Recv or MPI_Bcast. So we should be 
able to improve the performance of the program by sending the three input values in a single 
message. MPI provides three mechanisms for grouping individual data items into a single 
message : the count parameter to the various communication routines, derived datatypes, and 
MPI_Pack / MPI_Unpack. We examine each of these options in turn. 

5.1 The Count Parameter 

Recall that MPI_Send, MPI_Recv, MPI_Bcast, and MPI_Reduce all have a count and a 
datatype argument. These two parameters allow the user to group data items having the same 
basic type into a single message. In order to use this, the grouped data items must be stored in 
contiguous memory locations. Since Fortran guarantees that array elements are stored in contiguous 
memory locations, if we wish to send the elements of an array, or a subset of an array, we can do 
so in a single message. In fact, we’ve already done this in section 2, when we sent an array of 
character. 

As another example, suppose we wish to send the second half of a vector containing 100 real 
numbers from process 0 to process 1. 

      real vector(100) 
      integer status(MPI_STATUS_SIZE) 
      integer p, my_rank, ierr 
      integer i 
        . 
        . 
        . 
      if (my_rank == 0) then 
C         Initialize vector and send.  
          tag = 47 
          count = 50 
          dest = 1 
          call MPI_SEND(vector(51), count, MPI_REAL , dest, tag, 
     +         MPI_COMM_WORLD, ierr)  
      else   
          tag = 47 
          count = 50 
          source = 0 
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          call MPI_RECV(vector(51), count, MPI_REAL , source, tag, 
     +                  MPI_COMM_WORLD, status, ier r) 
 
      endif 
 
Unfortunately, this doesn’t help us with the trapezoid rule program. The data we wish to 
distribute to the other processes, a, b, and n, are stored in an array. So even if we declared them 
one after the other in our program, 

real a 
real b 
integer n 
 

Fortran does not guarantee that they are stored in contiguous memory locations. One might be 
tempted to store n as a float and put the three values in an array, but this would be poor 
programming style and it wouldn’t address the fundamental issue. In order to solve the problem 
we need to use one of MPI’s other facilities for grouping data. 

5.2 Derived Types and MPI_Type_struct 

It might seem that another option would be to store a, b, and n in a derived type9 with three 
members - two reals and an integer - and try to use the datatype argument to MPI_Bcast. The 
difficulty here is that the type of datatype is MPI_Datatype, which is an actual type itself - not the 
same thing as a user-defined type in Fortran 90. For example, suppose we included the type 
definition 

      type INDATA_TYPE 
          real a 
          real b 
          integer n 
      end type 
 
and the variable definition 

      type (INDATA_TYPE) indata 
 
Now if we call MPI_Bcast 

      call MPI_Bcast(indata, 1, INDATA_TYPE, 0, MPI _COMM_WORLD,  
     +               ierror) 
 

                                                                        

9 Type definition is available in FORTRAN 90. We may access individual variables in the derived type using the operator %. 
E.g.,  indata%a = 1.0 
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the program will fail. The detail depend on the implementation of MPI that you’re using. The 
problem here is that MPI is a pre-existing library of functions. That is, the MPI functions were 
written without knowledge of the datatypes that you define in your program. In particular, none 
of the MPI functions “knows” about INDATA_TYPE. 

MPI provides a partial solution to this problem, by allowing the user to build MPI datatypes at 
execution time. In order to build an MPI datatype, one essentially specifies the layout of the data 
in the type - the member types and their relative locations in memory. Such a type is called a MPI 
derived data type. In order to see how this works, let’s write a function that will build a MPI derived 
type. 

      MODULE GLOBAL 10 
          type INDATA_TYPE 
              real a 
              real b  
              integer n  
          end type INDATA_TYPE 
      END MODULE GLOBAL 
 
 
      subroutine Build_derived_type(indata, mesg_mp i_t) 
      use GLOBAL 11 
      INCLUDE       'mpif.h' 
      IMPLICIT NONE 
 
      type(INDATA_TYPE)   indata 
      integer      mesg_mpi_t    
 
      integer      ierr 
 
      integer      block_lengths(3) 
      integer      displacements(3) 
      integer      address(4) 
      integer      typelist(3) 
 
C  Build a derived datatype consisting of two real and an integer. 
 
C  First specify the types.  
      typelist(1) = MPI_REAL  
      typelist(2) = MPI_REAL  
      typelist(3) = MPI_INTEGER 
 
C  Specify the number of elements of each type. 
                                                                        

10 MODULE is a new kind of Fortran 90 program unit.  Any program unit may use the variables and type definition in a 
module by the “USE” statement. This feature is intended to replace “common block” in Fortran 77 which is very 
inconvenient. 

11 Supra. 
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      block_lengths(1) = 1 
      block_lengths(2) = 1 
      block_lengths(3) = 1 
 
C  Calculate the displacements of the members relat ive to indata. 
      call MPI_Address(indata,   address(1), ierr) 
      call MPI_Address(indata%a, address(2), ierr) 
      call MPI_Address(indata%b, address(3), ierr) 
      call MPI_Address(indata%n, address(4), ierr) 
      displacements(1) = address(2) - address(1) 
      displacements(2) = address(3) - address(1) 
      displacements(3) = address(4) - address(1) 
 
C  Build the derived datatype    
      call MPI_TYPE_STRUCT(3, block_lengths, displa cements, 
     +     typelist, mesg_mpi_t, ierr) 
 
C  Commit it -- tell system we'll be using it for c ommunication.  
      call MPI_TYPE_COMMIT(mesg_mpi_t, ierr) 
      return    
      end   
 
 
The first three statements specify the types of the members of the MPI derived type, and the next 
three specifies the number of elements of each type. The next four calculate the addresses of the 
three members of indata. The next three statements use the calculated  addresses to determine 
the displacements of the three members relative to the address of the first - which is given 
displacement 0. With this information, we know the types, sizes and relative locations of the 
members of a variable having Fortran 90 type INDATA_TYPE, and hence we can define a 
derived data type that corresponds to the Fortran type. This is done by calling the functions 
MPI_Type_struct and MPI_Type_commit. 

The newly created MPI datatype can be used in any of the MPI communication functions. In 
order to use it, we simply use the starting address of a variable of type INDATA_TYPE as the 
first argument, and the derived type in the datatype argument. For example, we could rewrite the 
Get_data function as follows. 

 
      subroutine Get_data3(indata, my_rank) 
      use global 
      type(INDATA_TYPE) indata 
      integer     my_rank    
      integer     mesg_mpi_t    
      integer     ierr 
      include     'mpif.h' 
 
      if (my_rank == 0) then 
          print *, 'Enter a, b, and n' 
          read *, indata%a, indata%b, indata%n 
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      endif 
      call Build_derived_type(indata,  mesg_mpi_t) 
      call MPI_BCAST(indata, 1, mesg_mpi_t, 0, MPI_ COMM_WORLD,  
     +ierr ) 
      return  
      end 
 
To summarize, then, we can build general MPI derived datatypes by calling MPI_Type_struct.  
The syntax is  

      call MPI_TYPE_STRUCT(count, array_of_block_le ngths,  
     +array_of_displacements, array_of_types, newty pe, ierror) 
      integer count, array_of_block_lengths(*),  
      integer array_of_displacements(*) , array_of_ types(*) 
      integer array_of_types(*), newtype, ierror 
 

The argument count is the number of elements in the derived type.  It is also the size of the three 
arrays, array_of_block_lengths, array_of_displacements, and array_of_types.  The array 
array_of_block_lengths contains the number of entries in each element of the type.  So if an 
element of the type is an array of m values, then the corresponding entry in 
array_of_block_lengths is m. The array array_of_displacements contains the displacement 
of each element from the beginning of the message, and the array array_of_types contains the 
MPI datatype of each entry.  The argument newtype returns a pointer to the MPI datatype 
created by the call to MPI_Type_struct.  

Note also that newtype and the entries in array_of_types all have type MPI_Datatype.  So 
MPI_Type_struct can be called recursively to build more complex derived datatypes. 

 

5.3 Other Derived Datatype Constructors 

MPI_Type_struct is the most general datatype constructor in MPI, and as a consequence, the 
user must provide a complete description of each element of the type. If the data to be transmitted 
consists of a subset of the entries in an array, we shouldn't need to provide such detailed 
information, since all the elements have the same basic type.  MPI provides three derived 
datatype constructors for dealing with this situation: MPI_Type_Contiguous, 
MPI_Type_vector and MPI_Type_indexed. The first constructor builds a derived type 
whose elements are contiguous entries in an array.  The second builds a type whose elements are 
equally spaced entries of an array, and the third builds a type whose elements are arbitrary entries 
of an array. Note that before any derived type can be used in communication it must be committed 
with a call to MPI_Type_commit. 

Details of the syntax of the additional type constructors follow. 
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      MPI_Type_contiguous(count, oldtype, newtype, ierror) 
      integer count, oldtype, newtype, ierror 
 

MPI_Type_contiguous creates a derived datatype consisting of count elements of type  
oldtype. The elements belong to contiguous memory locations. 

      MPI_Type_vector(count, block_length, stride,  
     +element_type, newtype, ierror) 
      integer count, blocklength, stride oldtype, n ewtype, ierror 
 
MPI_Type_vector creates a derived type consisting of count elements.  Each element contains 
block_length entries of type element_type.  Stride is the number of elements of type 
element_type between successive elements of new_type. 

      MPI_Type_indexed(count, array_of_block_length s,  
     +array_of_displacements, element_type, newtype , ierror 
      integer count, array_of_block_lengths(*),  
     +array_of_displacements, element_type, newtype , ierror 
 
MPI_Type_indexed creates a derived type consisting of count elements.  The ith element  (i = 
1, ..., count), consists of array_of_block_lengths[i] entries of type element_type, and it is 
displaced array_of_displacements[i] units of type element_type from the beginning of 
newtype. 

5.4 Pack/Unpack 

An alternative approach to grouping data is provided by the MPI functions MPI_Pack and 
MPI_Unpack. MPI_Pack allows one to explicitly store noncontiguous data in contiguous 
memory locations, and MPI_Unpack can be used to copy data from a contiguous buffer into 
noncontiguous memory locations. In order to see how they are used, let's rewrite Get_data one 
last time.  

      subroutine Get_data4(a, b, n, my_rank) 
      real  a 
      real  b 
      integer    n 
      integer    my_rank 
C 
      INCLUDE   'mpif.h' 
      integer   ierr 
      character buffer(100) 
      integer   position 
C      in the buffer 
C 
      if (my_rank .EQ. 0) then 
          print *,'Enter a, b, and n' 
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          read *, a, b, n 
C 
C  Now pack the data into buffer.  Position = 0    
C  says start at beginning of buffer.              
          position = 0 
C 
C  Position is in/out    
          call MPI_PACK(a, 1, MPI_REAL , buffer, 10 0, 
     +         position, MPI_COMM_WORLD, ierr ) 
C  Position has been incremented: it now refer-    
C  ences the first free location in buffer.        
C 
          call MPI_PACK(b, 1, MPI_REAL , buffer, 10 0, 
     +          position, MPI_COMM_WORLD, ierr ) 
C  Position has been incremented again.    
C 
          call MPI_PACK(n, 1, MPI_INTEGER, buffer, 100, 
     +          position, MPI_COMM_WORLD, ierr ) 
C  Position has been incremented again.    
C 
C  Now broadcast contents of buffer    
          call MPI_BCAST(buffer, 100, MPI_PACKED, 0 , 
     +         MPI_COMM_WORLD, ierr ) 
       else   
          call MPI_BCAST(buffer, 100, MPI_PACKED, 0 , 
     +        MPI_COMM_WORLD, ierr ) 
C 
C  Now unpack the contents of buffer    
          position = 0 
          call MPI_UNPACK(buffer, 100,  position, a , 1, 
     +        MPI_REAL , MPI_COMM_WORLD, ierr ) 
C  Once again position has been incremented:    
C  it now references the beginning of b.        
C 
          call MPI_UNPACK(buffer, 100,  position, b , 1, 
     +        MPI_REAL , MPI_COMM_WORLD, ierr ) 
          call MPI_UNPACK(buffer, 100,  position, n , 1, 
     +        MPI_INTEGER, MPI_COMM_WORLD, ierr ) 
       endif 
       return 
       end 
C 
 

In this version of Get_data process 0 uses MPI_Pack to copy a to buffer and then append b 
and n. After the broadcast of buffer, the remaining processes use MPI_Unpack to successively 
extract a, b, and n from buffer. Note that the datatype for the calls to MPI_Bcast is 
MPI_PACKED. 

The syntax of MPI_Pack is 
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      MPI_Pack( pack_data, in_count, datatype, buff er, size,  
     +position_ptr, comm, ierror) 
      <type> pack_data(*), buffer(*) 
      integer in_count, datatype, size, position_pt r, comm, ierror 
 
The parameter pack_data references the data to be buffered.  It should consist of in_count 
elements, each having type datatype.  The parameter position_ptr is an in/out parameter.  On 
input, the data referenced by pack_data is copied into memory starting at address  buffer + 
position_ptr.  On return, position_ptr references the first location in buffer after the data that 
was copied.  The parameter size contains the size in bytes of the memory referenced by buffer, 
and comm is the communicator that will be using buffer. 

The syntax of MPI_Unpack is 

      MPI_Unpack(buffer, size, position_ptr, unpack _data,  
     +count, datatype, comm, ierror) 
      <type> inbuf(*), outbuf(*) 
      integer insize, position, outcount, datatype,  comm, ierror 
 
The parameter buffer references the data to be unpacked.  It consists of size bytes.  The 
parameter position_ptr is once again an in/out parameter.  When MPI_Unpack is called, the 
data starting at address buffer + position_ptr is copied into the memory referenced by  
unpack_data.  On return, position_ptr references the first location in buffer after the data that 
was just copied. MPI_Unpack will copy count elements having type datatype into  
unpack_data.  The communicator associated with buffer is comm. 

5.5 Deciding Which Method to Use 

If the data to be sent is stored in consecutive entries of an array, then one should simply use the 
count and datatype arguments to the communication function(s).  This approach involves no 
additional overhead in the form of calls to derived datatype creation functions or calls to 
MPI_Pack/MPI_Unpack. 

If there are a large number of elements that are not in contiguous memory locations, then 
building a derived type will probably involve less overhead than a large number of calls to 
MPI_Pack/MPI_Unpack. 

If the data all have the same type and are stored at regular intervals in memory (e.g., a column of a 
matrix), then it will almost certainly be much easier and faster to use a derived datatype than it will 
be to use MPI_Pack/MPI_Unpack. Furthermore, if the data all have the same type, but are 
stored in irregularly spaced locations in memory, it will still probably be easier and more efficient 
to create a derived type using MPI_Type_indexed. Finally, if the data are heterogeneous and 
one is repeatedly sending the same collection of data (e.g., row number, column number, matrix 
entry), then it will be better to use a derived type, since the overhead of creating the derived type 
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is incurred only once, while the overhead of calling MPI_Pack/MPI_Unpack must be incurred 
every time the data is communicated. 

This leaves the case where one is sending heterogeneous data only once, or very few times.  In 
this case, it may be a good idea to collect some information on the cost of derived type creation 
and packing/unpacking the data.  For example, on an nCUBE 2 running the MPICH 
implementation of MPI, it takes about 12 milliseconds to create the derived type used in 
Get_data3, while it only takes about 2 milliseconds to pack or unpack the data in  Get_data4.  
Of course, the saving isn't as great as it seems because of the asymmetry in the pack/unpack 
procedure.  That is, while process 0 packs the data, the other processes are idle, and the entire 
function won't complete until both the pack and unpack are executed.  So the cost ratio is 
probably more like 3:1 than 6:1. 

There are also a couple of situations in which the use of MPI_Pack and MPI_Unpack is 
preferred. Note first that it may be possible to avoid the use of system buffering with pack, since 
the data is explicitly stored in a user-defined buffer. The system can exploit this by noting that the 
message datatype is MPI_PACKED. Also note that the user can send “variable-length”' 
messages by packing the number of elements at the beginning of the buffer.  For example, 
suppose we want to send rows of a sparse matrix.  If we have stored a row as a pair of arrays --- 
one containing the column subscripts, and one containing the corresponding matrix entries --- we 
could send a row from process 0 to process 1 as follows. 

      PROGRAM SpaRow 
      INCLUDE 'mpif.h' 
      integer  HUGE 
      parameter (HUGE = 100) 
      integer   p 
      integer   my_rank 
      real      entries(10) 
      integer   column_subscripts(10) 
      integer   nonzeroes 
      integer   position 
      integer   row_number 
      character buffer *100     
      integer   status(MPI_STATUS_SIZE) 
      integer   ierr  
      integer   i 
      data nonzeroes /10/ 
C 
      call MPI_INIT( ierr) 
      call MPI_COMM_SIZE(MPI_COMM_WORLD,  p, ierr )  
      call MPI_COMM_RANK(MPI_COMM_WORLD,  my_rank, ierr ) 
C 
      if (my_rank .EQ. 0)  then 
C  Get the number of nonzeros in the row.    
C  Initialize entries and column_subscripts    
          do  i = 1, nonzeroes    
              entries(i)           = 2*i 
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              column_subscripts(i) = 3*i 
          enddo 
C 
C  Now pack the data and send    
          position = 1 
          call MPI_PACK( nonzeroes, 1, MPI_INTEGER,  buffer, HUGE, 
     +         position, MPI_COMM_WORLD, ierr ) 
          call MPI_PACK( row_number, 1, MPI_INTEGER , buffer, HUGE, 
     +          position, MPI_COMM_WORLD, ierr ) 
          call MPI_PACK(entries, nonzeroes, MPI_REA L , buffer, 
     +         HUGE,  position, MPI_COMM_WORLD, ier r ) 
          call MPI_PACK(column_subscripts,nonzeroes ,MPI_INTEGER, 
     +         buffer, HUGE,  position, MPI_COMM_WO RLD, ierr ) 
          call MPI_SEND(buffer, position, MPI_PACKE D, 1, 0, 
     +         MPI_COMM_WORLD, ierr ) 
       else     
          call MPI_RECV(buffer, HUGE, MPI_PACKED, 0 , 0, 
     +         MPI_COMM_WORLD,  status, ierr ) 
          position = 1 
          call MPI_UNPACK(buffer, HUGE,  position,  nonzeroes, 
     +         1, MPI_INTEGER, MPI_COMM_WORLD, ierr  ) 
          call MPI_UNPACK(buffer, HUGE,  position,  row_number, 
     +         1, MPI_INTEGER, MPI_COMM_WORLD, ierr  ) 
          call MPI_UNPACK(buffer,HUGE,  position, e ntries, 
     +         nonzeroes, MPI_REAL , MPI_COMM_WORLD , ierr ) 
          call MPI_UNPACK(buffer, HUGE,  position,  
     +         column_subscripts, 
     +         nonzeroes, MPI_INTEGER, MPI_COMM_WOR LD, ierr ) 
          do  i = 1, nonzeroes   
              print *, entries(i), column_subscript s(i) 
          enddo 
      endif 
C 
      call MPI_FINALIZE(ierr) 
      end 
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6. Communicators and Topologies 
The use of communicators and topologies makes MPI different from most other message-
passing systems.  Recollect that, loosely speaking, a communicator is a collection of processes that 
can send messages to each other.  A topology is a structure imposed on the processes in a 
communicator that allows the processes to be addressed in different ways. In order to illustrate 
these ideas, we will develop code to implement Fox's algorithm for multiplying two square 
matrices. 

6.1 Fox's Algorithm 

We assume that the factor matrices A = (aij) and B = (bij) have order n. We also assume that the 

number of processes, p, is a perfect square, whose square root evenly divides n.  Say p = q2, and n  
= n/q. In Fox's algorithm the factor matrices are partitioned among the processes in a block 
checkerboard fashion.  So we view our processes as a virtual two-dimensional  q x q grid, and each 

process is assigned an n xn  submatrix of each of the factor matrices.  More formally, we have a 
mapping 

φ:{ , ,..., } {( , ): , }0 1 1 0 1p s t s t q− → ≤ ≤ −  

that is both one-to-one and onto. This defines our grid of processes: process i belongs to the row 

and column given by φ ( )i . Further, the process with rank φ −1( , )s t is assigned the submatrices 
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For example, if p = 9, φ( )x  = (x/3, x mod 3), and n = 6, then A would be partitioned as follows. 

Process 0 Process 1 Process 2 
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In Fox's algorithm, the block submatrices, Ars and Bst, s = 0, 1, .... , q - 1, are multiplied and 

accumulated on process φ −1( , )r t . The basic algorithm is: 

      do step = 0, q - 1 
1. Choose a submatrix of A from each row of process es. 
2. In each row of processes broadcast the submatrix  

chosen in that row to the other processes in that r ow. 
3. On each process, multiply the newly received sub matrix 

of A by the submatrix of B currently residing on th e 
process. 

4. On each process, send the submatrix of B to the 
process directly above. (On processes in the first row, 
send the submatrix to the last row.) 

      enddo 
 
The submatrix chosen in the rth row is Ar,u, , where 

u = (r + step ) mod q. 

6.2 Communicators 

If we try to implement Fox's algorithm, it becomes apparent that our work will be greatly 
facilitated if we can treat certain subsets of processes as a communication universe --- at least on a 
temporary basis.  For example,  in the pseudo-code  

2. In each row of processes broadcast the submatrix  chosen in 
that row to the other processes in that row. 

it would be useful to treat each row of processes as a communication universe, while in the 
statement 
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4. On each process, send the submatrix of B to the process 
directly above. (On processes in the first row, sen d the 
submatrix to the last row.) 

 

it would be useful to treat each column of processes as a communication universe. 

The mechanism that MPI provides for treating a subset of processes as a “communication'” 
universe is the communicator. Up to now, we've been loosely defining a communicator as a 
collection of processes that can send messages to each other.  However, now that we want to 
construct our own communicators, we will need a more careful discussion. 

In MPI, there are two types of communicators: intra-communicators and inter-communicators. 

Intra-communicators are essentially a collection of processes that can send messages to each 
other and engage in collective communication operations. For example, MPI_COMM_WORLD 
is an intra-communicator, and we would like for each row and each column of processes in Fox's 
algorithm to form an  intra-communicator. Inter-communicators, as the name implies, are used 
for sending messages between processes belonging to disjoint intra-communicators. For example, 
an inter-communicator would be useful in an environment that allowed one to dynamically create 
processes:  a newly created set of processes that formed an intra-communicator could be linked 
to the original set of processes (e.g., MPI_COMM_WORLD) by an inter-communicator. We 
will only discuss intra-communicators. The interested reader is referred to [4] for details on the 
use of inter-communicators. 

A minimal (intra-)communicator is composed of  

• a Group, and 

• a Context. 

A group is an ordered collection of processes.  If a group consists of p processes, each process in 
the group is assigned a unique rank, which is just a nonnegative integer in the range 0, 1, .... , p - 1. 
A context can be thought of as a system-defined tag that is attached to a group.  So two processes 
that belong to the same group and that use the same context can communicate.  This pairing of a 
group with a context is the most basic form of a communicator. Other data can be associated to a 
communicator.  In particular, a structure or topology can be imposed on the processes in a 
communicator, allowing a more natural addressing scheme. We'll discuss topologies in section 
6.5. 
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6.3 Working with Groups, Contexts, and 
Communicators 

To illustrate the basics of working with communicators, let's create a communicator whose 
underlying group consists of the processes in the first row of our virtual grid.  Suppose that 

MPI_COMM_WORLD consists of p processes, where q2 = p. Let's also suppose thatφ ( )x  = 

(x/q, x mod q). So the first row of processes consists of the processes with ranks 0, 1, ...., q - 1. 
(Here, the ranks are in MPI_COMM_WORLD.)  In order to create the group of our new 
communicator, we can execute the following code. 

      PROGRAM ComCrt 
      INCLUDE 'mpif.h' 
      IMPLICIT NONE 
      integer, parameter 12 :: MAX_PROCS = 100 
      integer        p 
      real           p_real 
      integer        q    
      integer        my_rank 
      integer        MPI_GROUP_WORLD 
      integer        first_row_group 
      integer        first_row_comm 
      integer        process_ranks(0:MAX_PROCS-1) 
      integer        proc 
      integer        test 
      integer        sum 
      integer        my_rank_in_first_row 
      integer        ierr 
C 
C 
      test = 0 
      call MPI_INIT( ierr) 
      call MPI_COMM_SIZE(MPI_COMM_WORLD,  p, ierr )  
      call MPI_COMM_RANK(MPI_COMM_WORLD,  my_rank, ierr ) 
C 
      p_real = p 
      q =  sqrt(p_real) 
C 
C  Make a list of the processes in the new communic ator. 
      do  proc = 0,  q-1   
          process_ranks(proc) = proc 
      enddo 
C 
C  Get the group underlying MPI_COMM_WORLD    
      call MPI_COMM_GROUP(MPI_COMM_WORLD, MPI_GROUP _WORLD, ierr ) 

                                                                        

12 An integer with the attribute “parameter” means it is a integer symbolic constant and cannot be changed at run time. 
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C 
C  Create the new group    
      call MPI_GROUP_INCL(MPI_GROUP_WORLD, q, proce ss_ranks, 
     +                   first_row_group, ierr) 
C 
C  Create the new communicator    
      call MPI_COMM_CREATE(MPI_COMM_WORLD, first_ro w_group, 
     +      first_row_comm, ierr) 
C 
 

This code proceeds in a fairly straightforward fashion to build the new communicator.  First it 
creates a list of the processes to be assigned to the new communicator. Then it creates a group 
consisting of these processes. This required two commands:  first get the group associated with 
MPI_COMM_WORLD, since this is the group from which the processes in the new group will 
be taken; then create the group with MPI_Group_incl.  Finally, the actual communicator is 
created with a call to MPI_Comm_create.  The call to MPI_Comm_create implicitly 
associates a context with the new group. The result is the communicator first_row_comm. Now 
the processes in first_row_comm can perform collective communication operations.  For 
example, process 0 (in first_row_group) can broadcast A00 to the other processes in 
first_row_group. 

        
      integer my_rank_in_first_row 
      real, allocatable 13 , dimension( :,: ) 14 :: 15 A_00 
 
      if (my_rank < q)  then 
          call MPI_COMM_RANK(first_row_comm,   
     +                       my_rank_in_first_row, ierr) 
          !  Allocate space for A_00, order n_bar. 
          allocate (A_00(n_bar,n_bar)) 16 
          if (my_rank_in_first_row == 0) then 
               ! initialize A_00 
          endif 
          call MPI_BCAST( A_00, n_bar*n_bar, MPI_IN TEGER, 0,  
     +                    first_row_comm, ierr) 
      endif 
 
                                                                        

13 Allocatable is an attribute of a variable. It means that the array can be dynamically allocated at run time. 

14 “dimension(:, : )” means the array is two dimensional and the size of the two dimension is unknown at compile time. The 
array have to be allocated at run time. 

15 :: is a separator between variable attributes and variable names. 

16 The function “Allocate “ allocates memory space for an allocatable array. 
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Groups and communicators are opaque objects. From a practical standpoint, this means that the 
details of their internal representation depend on the particular implementation of MPI, and, as a 
consequence, they cannot be directly accessed by the user.  Rather the user accesses a handle that 
references the opaque object, and the opaque objects are manipulated by special MPI functions, 
for example, MPI_Comm_create, MPI_Group_incl, and MPI_Comm_group. 

Contexts are not explicitly used in any MPI functions. Rather they are implicitly associated with 
groups when communicators are created. The syntax of the commands we used to create 
first_row_comm is fairly self-explanatory. The first command  

      MPI_Comm_group(comm, group, ierror) 
      integer comm, group, ierror 
 
simply returns the group underlying the communicator comm. 

The second command 

      MPI_Group_incl(old_group, new_group_size, 
     +ranks_in_old_group, new_group, ierror) 
      integer old_group, new_group_size, 
      integer ranks_in_old_group(*), new_group, ier ror 
 
creates a new group from a list of processes in the existing group old_group.  The number of 
processes in the new group is new_group_size, and the processes to be included are listed in 
ranks_in_old_group.  Process 0 in new_group has rank ranks_in_old_group(0) in 
old_group, process 1 in new_group has rank ranks_in_old_group(1) in old_group,  etc. 

The final command 

      MPI_Comm_create(old_comm, new_group, new_comm , ierror) 
      integer old_comm, new_group, new_comm, ierror  
 
associates a context with the group new_group and creates the communicator new_comm. All 
of the processes in new_group belong to the group underlying old_comm. 

There is an extremely important distinction between the first two functions and the third.  
MPI_Comm_group and MPI_Group_incl, are both local operations.  That is, there is no 
communication among processes involved in their execution. However, MPI_Comm_create is 
a collective operation.  All the processes in old_comm must call MPI_Comm_create with the 
same arguments. The Standard [4] gives three reasons for this: 

1. It allows the implementation to layer MPI_Comm_create on top of regular collective 
communications. 

2. It provides additional safety. 

3. It permits implementations to avoid communication related to context creation. 
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Note that since MPI_Comm_create is collective, it will behave, in terms of the data 
transmitted, as if it synchronizes.  In particular, if several communicators are being created, they 
must be created in the same order on all the processes. 

6.4 MPI_Comm_split 

In our matrix multiplication program we need to create multiple communicators --- one for each 
row of processes and one for each column.  This would be an extremely tedious process if p were 
large and we had to create each communicator using the three functions discussed in the previous 
section. Fortunately, MPI provides a function, MPI_Comm_split that can create several 
communicators simultaneously. As an example of its use, we'll create one communicator for each 
row of processes.  

      integer my_row_comm 
      integer my_row 
 
C  my_rank is rank in MPI_COMM_WORLD. 
C  q*q = p    
      my_row = my_rank/q 
      call MPI_COMM_SPLIT(MPI_COMM_WORLD, my_row, m y_rank, 
     +      my_row_comm, ierr) 
 
 

The single call to MPI_Comm_split creates q new communicators, all of them having the same 
name, my_row_comm.  For example, if p = 9, the group underlying my_row_comm will 
consist of the processes 0, 1, and 2 on processes 0, 1, and 2.  On processes 3, 4, and 5, the group 
underlying my_row_comm will consist of the processes 3, 4, and 5, and on processes 6, 7, and 8 
it will consist of processes 6, 7, and 8.  

The syntax of MPI_Comm_split is 

      MPI_COMM_SPLIT(old_comm, split_key, rank_key,  
     +      new_comm, ierror) 
      integer old_comm, split_key, rank_key, new_co mm, ierror 
 
It creates a new communicator for each value of split_key. Processes with the same value of 
split_key form a new group.  The rank in the new group is determined by the value of  
rank_key.  If process A and process B call MPI_Comm_split with the same value of 
split_key, and the rank_key argument passed by process A is less than that passed by process 
B, then the rank of A in the group underlying new_comm will be less than the rank of process 
B.  If they call the function with the same value of rank_key, the system will arbitrarily assign 
one of the processes a lower rank. 

MPI_Comm_split is a collective call, and it must be called by all the processes in old_comm.  
The function can be used even if the user doesn't wish to assign every process to a new 
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communicator.  This can be accomplished by passing the predefined constant 
MPI_UNDEFINED as the split_key argument.  Processes doing this will have the predefined 
value MPI_COMM_NULL returned in new_comm. 

6.5 Topologies 

Recollect that it is possible to associate additional information --- information beyond the group 
and context --- with a communicator. This additional information is said to be cached with the 
communicator, and one of the most important pieces of information that can be cached with a 
communicator is a topology.  In MPI, a topology is just a mechanism for associating different 
addressing schemes with the processes belonging to a group.  Note that MPI topologies are virtual 
topologies --- there may be no simple relation between the process structure defined by a virtual 
topology, and the actual underlying physical structure of the parallel machine. 

There are essentially two types of virtual topologies that can be created in MPI --- a cartesian or grid 
topology and a graph topology.  Conceptually, the former is subsumed by the latter.  However, 
because of the importance of grids in applications, there is a separate collection of functions in 
MPI whose purpose is the manipulation of virtual grids.  

In Fox's algorithm we wish to identify the processes in MPI_COMM_WORLD with the 
coordinates of a square grid, and each row and each column of the grid needs to form its own 
communicator.  Let's look at one method for building this structure. 

We begin by associating a square grid structure with MPI_COMM_WORLD. In order to do 
this we need to specify the following information. 

1. The number of dimensions in the grid.  We have 2. 

2. The size of each dimension.  In our case, this is just the number of rows and the number of 
columns.  We have q rows and q columns. 

3. The periodicity of each dimension.  In our case, this information specifies whether the     first 
entry in each row or column is “adjacent” to the last entry in that row or column, 
respectively. Since we want a “circular”' shift of the submatrices in each column, we want the 
second dimension to be periodic.  It's unimportant whether the first dimension is periodic.  

4. Finally, MPI gives the user the option of allowing the system to optimize the mapping of the 
grid of processes to the underlying physical processors by possibly reordering the processes in 
the group underlying the communicator. Since we don't need to preserve the ordering of the 
processes in MPI_COMM_WORLD, we should allow the system to reorder. 

Having made all these decisions, we simply execute the following code. 

      integer       grid_comm 
      integer       dim_sizes(0:1) 
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      logical       wrap_around(0:1) 
      logical       reorder 17 = .TRUE. 
 
      dim_sizes(0) = q 
      dim_sizes(1) = q 
      wrap_around(0) = .TRUE. 
      wrap_around(1) = .TRUE. 
      call MPI_CART_CREATE(MPI_COMM_WORLD, 2, dim_s izes, 
     +      wrap_around, reorder,  grid_comm, ierr)  
 

After executing this code, the communicator grid_comm will contain all the processes in  
MPI_COMM_WORLD (possibly reordered), and it will have a two-dimensional cartesian 
coordinate system associated.  In order for a process to determine its coordinates, it simply calls 
the function MPI_Cart_coords : 

      integer   coordinates(0:1) 
      integer   my_grid_rank 
 
      call MPI_COMM_RANK(grid_comm,  my_grid_rank, ierr) 
      call MPI_CART_COORDS(grid_comm, my_grid_rank,  2, 
     +         coordinates, ierr) 
 

Notice that we needed to call MPI_Comm_rank in order to get the process rank in 
grid_comm. This was necessary because in our call to MPI_Cart_create we set the reorder 
flag to .TRUE. , and hence the original process ranking in MPI_COMM_WORLD may have 
been changed in grid_comm. 

The “inverse”' to MPI_Cart_coords is MPI_Cart_rank. 

      call MPI_CART_RANK(grid_comm, coordinates, gr id_rank, 
     +         ierr) 
      integer grid_comm, coordinates(*), grid_rank,  ierr 
 
Given the coordinates of a process, MPI_Cart_rank returns the rank of the process in its third 
parameter process_rank. 

The syntax of MPI_Cart_create is 

      call MPI_CART_CREATE(old_comm, number_of_dims , dim_sizes, 
     +      periods, reorder,  cart_comm, ierror) 
      integer old_comm, number_of_dims, dim_sizes(* ) 
      logical periods(*), reorder  
      integer cart_comm, ierror 

                                                                        

17 This syntax initialize the variable. 
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MPI_Cart_create creates a new communicator, cart_comm by caching a cartesian topology 
with old_comm.  Information on the structure of the cartesian topology is contained in the 
parameters number_of_dims, dim_sizes, and periods.  The first of these, 
number_of_dims, contains the number of dimensions in the cartesian coordinate system.  The 
next two, dim_sizes and periods, are arrays with order equal to number_of_dims.  The array 
dim_sizes specifies the order of each dimension, and periods specifies whether each dimension 
is circular or linear.  

The processes in cart_comm are ranked in row-major order. That is, the first row consists of 
processes 0, 1, .... , dim_sizes(0)-1, the second row consists of processes dim_sizes(0), 
dim_sizes(0)+1, .... , 2*dim_sizes(0)-1, etc.  Thus it may be advantageous to change the relative 
ranking of the processes in old_comm. For example, suppose the physical topology is a 3 x 3 grid, 
and the processes (numbers) in old_comm are assigned to the processors  (grid squares) as 
follows. 

3 4 5 

0 1 2 

6 7 8 

 

Clearly, the performance of Fox's algorithm would be improved if we re-numbered the processes.   
However, since the user doesn't know what the exact mapping of processes to processors is, we 
must let the system do it by setting the reorder parameter to .TRUE. . 

Since MPI_Cart_create constructs a new communicator, it is a collective operation. 

The syntax of the address information functions is 

      MPI_Cart_rank(comm, coordinates, rank, ierror ) 
      integer comm, coordinates(*), rank, ierror 
 
      MPI_Cart_coords(comm, rank, number_of_dims, c oordinates,     
     +  ierror) 
      integer comm, rank, number_of_dims, coordinat es(*), ierror 
 
MPI_Cart_rank returns the rank in the cartesian communicator comm of the process with 
cartesian coordinates coordinates.  So coordinates is an array with order equal to the number 
of dimensions in the cartesian topology  associated with comm. MPI_Cart_coords is the 
inverse to MPI_Cart_rank:  it returns the coordinates of the process with rank rank in the 
cartesian communicator comm.  Note that both of these functions are local. 



 

 44444444

6.6 MPI_Cart_sub 

We can also partition a grid into grids of lower dimension.  For example, we can create a 
communicator for each row of the grid as follows. 

      logical varying_coords(0:1) 
      integer row_comm 
 
      varying_coords(0) = .FALSE. 
      varying_coords(1) = .TRUE. 
      call MPI_CART_SUB(grid_comm, varying_coords, row_comm, ierr) 
     
The call to MPI_Cart_sub creates q new communicators. The varying_coords argument is an 
array of boolean.  It specifies whether each dimension “belongs” to the new communicator. Since 
we're creating communicators for the rows of the grid, each new communicator consists of the 
processes obtained by fixing the row coordinate and letting the column coordinate vary.  Hence 
we assigned varying_coords(0) the value .FALSE. --- the first coordinate doesn't vary --- and 
we assigned varying_coords(1) the value .TRUE. --- the second coordinate varies.  On each 
process, the new communicator is returned in row_comm.  In order to create the 
communicators for the columns, we simply reverse the assignments to the entries in 
varying_coords.  

    integer col_comm 
 
    varying_coords(0) = .TRUE. 
    varying_coords(1) = .FALSE. 
    call MPI_CART_SUB(grid_comm, varying_coords, ro w_comm, ierr) 
 
 
Note the similarity of MPI_Cart_sub to MPI_Comm_split.  They perform similar functions --
- they both partition a communicator into a collection of new communicators.  However, 
MPI_Cart_sub can only be used with a communicator that has an associated cartesian topology, 
and the new communicators can only be created by fixing (or varying) one or more dimensions 
of the old communicators.  Also note that MPI_Cart_sub is, like MPI_Comm_split, a 
collective operation. 

6.7 Implementation of Fox's Algorithm 

To complete our discussion, let's write the code to implement Fox's algorithm. First, we'll write a 
function that creates the various communicators and associated information.  Since this requires a 
large number of variables, and we'll be using this information in other functions, we'll put it into a 
Fortran 90 derived type to facilitate passing it among the various functions. 

Notice that since each of our communicators has an associated topology, we constructed them 
using the topology construction functions --- MPI_Cart_create and MPI_Cart_sub --- rather 
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than the more general communicator construction functions MPI_Comm_create and 
MPI_Comm_split. 

      program myfox 
      include 'mpif.h'  
      IMPLICIT NONE 
      type GRID_INFO_TYPE 
          integer p        ! Total number of proces ses. 
          integer comm     ! Communicator for the e ntire grid. 
          integer row_comm ! Communicator for my ro w. 
          integer col_comm ! Communicator for my co l. 
          integer q        ! Order of grid. 
          integer my_row   ! My row number. 
          integer my_col   ! My column number. 
          integer my_rank  ! My rank in the grid co mmunicator. 
      end type GRID_INFO_TYPE 
 
      TYPE (GRID_INFO_TYPE) :: grid_info 
      integer my_rank, ierr  
      real, allocatable, dimension(:,:) :: A,B,C 
      integer n, n_bar 
 
      call MPI_INIT(ierr) 
      call Setup_grid(grid_info) 
 
      call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, i err) 
      if (my_rank == 0)  then 
          print *, 'What is the order of the matric es?' 
          read *, n 
      endif  
 
      call MPI_BCAST(n,1,MPI_INTEGER, 0, MPI_COMM_W ORLD,ierr) 
      n_bar = n/(grid_info%q) 
      !  Allocate local storage for local matrix.  
      allocate( A(n_bar,n_bar) )  
      allocate( B(n_bar,n_bar) ) 
      allocate( C(n_bar,n_bar) ) 
 
      A = 1.0  18 
      B = 2.0 
      call Fox(n,grid_info,A,B,C,n_bar) 
      print *, C 
 
      contains 19 

                                                                        

18 This is Fortran 90 array syntax. It assigns every element of array A to be 1.0 . 

19 In Fortran 90, it is permissible to include a procedure as an integral part of a program unit. The program unit can  invoke 
the internal procedure. This inclusion is done by the statement “contains”. 
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      subroutine Setup_grid(grid) 
          TYPE (GRID_INFO_TYPE), intent(inout) 20 :: grid  
 
          integer old_rank 
          integer dimensions(0:1) 
          logical periods(0:1) 
          integer coordinates(0:1) 
          logical varying_coords(0:1)  
          integer ierr 
          
          !  Set up Global Grid Information. 
          call MPI_Comm_size(MPI_COMM_WORLD, grid%p ,   ierr) 
          call MPI_Comm_rank(MPI_COMM_WORLD, old_ra nk, ierr ) 
          grid%q = int(sqrt(dble(grid%p))) 
          dimensions(0) = grid%q 
          dimensions(1) = grid%q 
          periods(0) = .TRUE.  
          periods(1) = .TRUE. 
          call MPI_Cart_create(MPI_COMM_WORLD, 2,  
     +         dimensions, periods, .TRUE. , grid%c omm, ierr) 
          call MPI_Comm_rank  (grid%comm, grid%my_r ank, ierr ) 
          call MPI_Cart_coords(grid%comm, grid%my_r ank, 2,  
     +         coordinates, ierr ) 
          grid%my_row = coordinates(0) 
          grid%my_col = coordinates(1) 
 
          !  Set up row and column communicators. 
          varying_coords(0) = .FALSE. 
          varying_coords(1) = .TRUE. 
          call MPI_Cart_sub(grid%comm,varying_coord s, 
     +         grid%row_comm,ierr) 
          varying_coords(0) = .TRUE. 
          varying_coords(1) = .FALSE. 
          call MPI_Cart_sub(grid%comm,varying_coord s,  
     +         grid%col_comm,ierr) 
      end subroutine Setup_grid 
 
      subroutine Fox(n,grid,local_A,local_B,loca l_ C,n_bar) 
          integer, intent(in)               :: n, n _bar 
          TYPE(GRID_INFO_TYPE), intent(in)  :: grid  
          real, intent(in) , dimension(:,:) :: loca l_A, local_B 
          real, intent(out), dimension (:,:) :: loc al_C 
 
          real temp_A( SIZE(A,DIM=1),SIZE(A,DIM=2) ) 
          integer step, source, dest, request 
          integer status(MPI_STATUS_SIZE), bcast_ro ot 
 

                                                                        

20 intent(inout) is an attribute of dummy argument. It informs the compiler that this dummy argument may be used for read 
and write inside the subroutine. 



 

 47474747

          local_C = 0.0 
          source = mod( (grid%my_row + 1), grid%q )  
          dest   = mod( (grid%my_row + grid%q -1), (grid%q) ) 
          temp_A = 0.0 
 
          do step = 0, grid%q -1 
              bcast_root = mod( (grid%my_row + step ), (grid%q) ) 
              if (bcast_root == grid%my_col)  then 
                  call MPI_BCAST(local_A,n_bar*n_ba r,MPI_REAL, 
     +                 bcast_root, grid%row_comm, i err) 
                  call sgemm('N','N',n_bar,n_bar,n_ bar,1.0, 
     + local_A,n_bar,local_B,n_bar,1.0,local_C,n_ba r) 
              else 
                  call MPI_BCAST(temp_A,n_bar*n_bar ,MPI_REAL, 
     +                 bcast_root, grid%row_comm, i err) 
                  call sgemm('N','N',n_bar,n_bar,n_ bar,1.0, 
     +                temp_A,n_bar,local_B,n_bar,1. 0,local_C,n_bar) 
              endif 
          call MPI_Send(local_B,n_bar*n_bar,MPI_REA L,dest,  0, 
     +        grid%col_comm, ierr) 
          call MPI_Recv(local_B,n_bar*n_bar,MPI_REA L,source,0, 
     +        grid%col_comm, status, ierr ) 
 
          enddo  
      end subroutine Fox 
 
      end program myfox 
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7. Where To Go From Here 
 

7.1 What We Haven't Discussed 

MPI is a large library.  The Standard [4] is over 200 pages long and it defines more than 125 
functions.  As a consequence, this Guide has covered only a small fraction of MPI, and many 
readers will fail to find a discussion of functions that they would find very useful in their 
applications.  So we briefly list some of the more important ideas in MPI that we have not 
discussed here. 

1. Communication Modes. We have used only the standard communication mode for 
send. This means that it is up to the system to decide whether the message is 
buffered.  MPI provides three other communication modes: buffered, synchronous, and 
ready.  In buffered mode, the user explicitly controls the buffering of outgoing 
messages.  In synchronous mode, a send will not complete until a matching receive is 
posted.  In ready mode, a send may be started only if a matching receive has already 
been posted.  MPI provides three additional send functions for these modes. 

2. Nonblocking Communication.  We have used only blocking sends and receives 
(MPI_Send and MPI_Recv.)  For the send, this means that the call won't return 
until the message data and envelope have been buffered or sent --- i.e., until the 
memory referenced in the call to MPI_Send is available for re-use. For the receive, 
this means that the call won't return until the data has been received into the memory    
referenced in the call to MPI_Recv. Many applications can improve their 
performance by using nonblocking communication.  This means that the calls to 
send/receive may return before the operation completes.  For example, if the 
machine has     a separate communication processor, a non-blocking send could 
simply notify the communication processor that it should begin composing and 
sending the message.  MPI provides nonblocking sends in each of the four modes 
and a nonblocking receive.  It also provides various utility functions for determining 
the completion status of a non-blocking operation. 

3. Inter-communicators.  Recollect that MPI provides two types of communicators:  
intra-communicators and inter-communicators.  Inter-communicators can be used 
for point-to-point communications between processes belonging to distinct intra-
communicators.  

There are many other functions available to users of MPI. If we haven't discussed a facility you 
need, please consult the Standard [4] to determine whether it is part of MPI. 
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7.2 Implementations of MPI 

If you don't have an implementation of MPI, there are three versions that are freely available by 
anonymous ftp from the following sites. 

• Argonne National Lab/Mississippi State University. The address is 
info.mcs.anl.gov,        and the directory is pub/mpi. 

• Edinburgh University. The address is ftp.epcc.ed.ac.uk, and the directory is 
pub/chimp/release. 

• Ohio Supercomputer Center.  The address is tbag.osc.edu, and the directory is 
pub/lam. 

All of these run on networks of UNIX workstations.  The Argonne/Mississippi State and 
Edinburgh versions also run on various parallel processors.  Check the “README” files to see if 
your machine(s) are supported. 

7.3 More Information on MPI 

There is an MPI FAQ available by anonymous ftp at 

• Mississippi State University. The address is ftp.erc.msstate.edu, and the file is 
pub/mpi/faq. 

There are also numerous web pages devoted to MPI.  A few of these are 

• http://www.epm.ornl.gov/~walker/mpi.  The Oak Ridge National Lab MPI web 
page. 

• http://www.erc.msstate.edu/mpi.  The Mississippi State MPI web page. 

• http://www.mcs.anl.gov/mpi.  The Argonne MPI web page.  

Each of these sites contains a wealth of information about MPI. Of particular note, the 
Mississippi State page contains a bibliography of papers on MPI, and the Argonne page contains 
a collection of test MPI programs. 

The MPI Standard  [4] is currently available from each of the sites above.  This is, of course, the 
definitive statement of what MPI is. So if you're not clear on something, this is the final arbiter.  It 
also contains a large number of nice examples of uses of the various MPI functions. So it is 
considerably more than just a reference. Currently, several members of the MPI Forum are 
working on an annotated version of the MPI standard [5]. 
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The book [2] is a tutorial introduction to MPI. It provides numerous complete examples of MPI 
programs. 

The book [6] contains a tutorial introduction to MPI (on which this guide is based).  It also 
contains a more general introduction to parallel processing and the programming of message-
passing machines. 

The Usenet newsgroup, comp.parallel.mpi, provides information on updates to all of these 
documents and software. 

7.4 The Future of MPI 

As it is currently defined, MPI fails to specify two critical concepts: I/O and the 
creation/destruction of processes.   Work has already been started on the development of both 
I/O facilities and dynamic process creation.  Information on the former can be obtained from 
http://lovelace.nas.nasa.gov/MPI-IO/mpi-io.html, and information on the latter can be 
found on the Argonne MPI web page.  Significant developments are invariably posted to 
comp.parallel.mpi. 
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8. Compiling and Running MPI 
Programs 
This section is intended to give the outline of how to compile and run a program in the IBM SP2.  

MPI program written in Fortran or Fortran 90 can be compiled using the following command : 

mpif77 program.f 
 
By default, the program will be running on 4 processors of the SP2. The program can be invoked 
by the name of executable 

a.out 
 
The number of processes is controled by the environment variable MP_PROCS. The web page 
http://www.hku.hk/cc/sp2/technical/setenv.html has manuals for setting the environment 
variable. 
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