

INTRODUCTION

Message Passing Programming

MPI Users’ Guide in
FORTRAN

INTRODUCT ION TO MES SAGE P A S S ING PROGRAMMING

MPI User Guide in FORTRAN

Dr Peter S. Pacheco
Department of Mathematics
University of San Francisco
San Francisco, CA 94117

March 26, 1995

Woo Chat Ming
Computer Centre

University of Hong Kong
Hong Kong

March 17, 1997

1. INTRODUCTION ... 2

2. GREETINGS ! ... 3

2.1 GENERAL MPI PROGRAMS .. 4

2.2 FINDING OUT ABOUT THE REST OF THE WORLD .. 5

2.3 MESSAGE : DATA + ENVELOPE .. 6

2.4 MPI_SEND AND MPI_RECV ... 7

3. AN APPLICATION .. 9

3.1 SERIAL PROGRAM .. 9

3.2 PARALLELIZING THE TRAPEZOID RULE .. 10

3.3 I/O ON PARALLEL PROCESSORS ... 14

4. COLLECTIVE COMMUNICATION ... 17

4.1 TREE-STRUCTURED COMMUNICATION .. 17

4.2 BROADCAST .. 19

4.3 REDUCE .. 20

4.4 OTHER COLLECTIVE COMMUNICATION FUNCTIONS .. 22

5. GROUPING DATA FOR COMMUNICATION .. 24

5.1 THE COUNT PARAMETER .. 24

5.2 DERIVED TYPES AND MPI_TYPE_STRUCT .. 25

5.3 OTHER DERIVED DATATYPE CONSTRUCTORS ... 28

5.4 PACK/UNPACK .. 29

5.5 DECIDING WHICH METHOD TO USE .. 31

6. COMMUNICATORS AND TOPOLOGIES... 34

6.1 FOX'S ALGORITHM .. 34

6.2 COMMUNICATORS ... 35

6.3 WORKING WITH GROUPS, CONTEXTS, AND COMMUNICATORS .. 37

6.4 MPI_COMM_SPLIT .. 40

6.5 TOPOLOGIES .. 41

6.6 MPI_CART_SUB.. 44

6.7 IMPLEMENTATION OF FOX'S ALGORITHM .. 44

7. WHERE TO GO FROM HERE .. 48

7.1 WHAT WE HAVEN'T DISCUSSED ... 48

7.2 IMPLEMENTATIONS OF MPI ... 49

7.3 MORE INFORMATION ON MPI ... 49

7.4 THE FUTURE OF MPI ... 50

8. COMPILING AND RUNNING MPI PROGRAMS ... 51

9. REFERENCE .. 52

1. Introduction
he Message-Passing Interface or MPI is a library of functions and macros that can be
used in C, FORTRAN, and C++ programs, As its name implies, MPI is intended for use
in programs that exploit the existence of multiple processors by message-passing.

MPI was developed in 1993-1994 by a group of researchers from industry, government, and
academia. As such, it is one of the first standards for programming parallel processors, and it is
the first that is based on message-passing.

In 1995, A User’s Guide to MPI has been written by Dr Peter S. Pacheco. This is a brief tutorial
introduction to some of the more important feature of the MPI for C programmers. It is a nicely
written documentation and users in our university find it very concise and easy to read.

However, many users of parallel computer are in the scientific and engineers community and
most of them use FORTRAN as their primary computer language. Most of them don’t use C
language proficiently. This situation occurs very frequently in Hong Kong. A a result, the “A
User’s Guide to MPI” is translated to this guide in Fortran to address for the need of scientific
programmers.

Acknowledgments. I gratefully acknowledge Dr Peter S. Pacheco for the use of C version of the
user guide on which this guide is based. I would also gratefully thanks to the Computer Centre of
the University of Hong Kong for their human resource support of this work. And I also thanks
to all the research institution which supported the original work by Dr Pacheco.

T

 3333

2. Greetings !
The first program that most of us saw was the “Hello, world!” program in most of introductory
programming books. It simply prints the message “Hello, world!”. A variant that makes some use
of multiple processes is to have each process send a greeting to another process.

In MPI, the process involved in the execution of a parallel program are identified by a sequence
of non-negative integers. If there are p processes executing a program, they will have ranks 0, 1,...,
p-1. The following program has each process other than 0 send a message to process 0, and
process 0 prints out the messages it received.

 program greetings
 include 'mpif.h'

 integer my_rank
 integer p
 integer source
 integer dest
 integer tag
 character*100 message
 character*10 digit_string
 integer size
 integer status(MPI_STATUS_SIZE)
 integer ierr
 call MPI_Init(ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, i err)
 call MPI_Comm_size(MPI_COMM_WORLD, p, ierr)
 if (my_rank .NE. 0) then
 1write(digit_string,FMT="(I3)") my_rank
 message = 'Greetings from process '
 + // 2 trim(digit_string) // ' !'
 dest = 0
 tag = 0
 call MPI_Send(message, len_trim(message) 3,
 + MPI_CHARACTER, dest, tag, MPI_COMM_WORLD, ierr)
 else
 do source = 1, p-1
 tag = 0
 call MPI_Recv(message, 100, MPI_CHARA CTER,

1 This line changes the binary format (integer) my_rank to string format digit_string .

2 // is concatenation operator which combines two strings to form a third, composite string. E.g. ‘This ‘ // ‘is ‘
// ‘a ‘ // ‘dog.’ is equal to the string ‘This is a dog.’

3 LEN_TRIM(STRING) returns the length of the character argument without counting trailing blank.

 4444

 + source, tag, MPI_COMM_WORLD, status, ierr)
 write(6,FMT="(A)") message
 enddo
 endif

 call MPI_Finalize(ierr)
 end program greetings

The details of compiling and executing this program is in chapter 8.

When the program is compiled and run with two processes, the output should be

Greetings from process 1!

If it’s run with four processes, the output should be

Greetings from process 1!
Greetings from process 2!
Greetings from process 3!

Although the details of what happens when the program is executed vary from machine to
machine, the essentials are the same on all machines. Provided we run one process on each
processor.

1. The user issues a directive to the operating system which has the effect of placing a
copy of the executable program on each processor.

2. Each processor begins execution of its copy of the executable.

3. Different processes can execute different statements by branching within the
program. Typically the branching will be based on process ranks.

So the Greetings program uses the Single Program Multiple Data or SPMD paradigm. That is, we
obtain the effect of different programs running on different processors by taking branches within a
single program on the basis of process rank : the statements executed by process 0 are different
from those executed by the other processes, even though all processes are running the same
program. This is the most commonly used method for writing MIMD programs, and we’ll use it
exclusively in this Guide.

2.1 General MPI Programs

Every MPI program must contain the preprecessor directive

 include ‘mpif.h’

This file, mpif.h, contains the definitions, macros and function prototypes necessary for
compiling an MPI program.

 5555

Before any other MPI functions can be called, the function MPI_Init must be called, and it
should only be called once. Fortran MPI routines have an IERROR argument - this contains the
error code. After a program has finished using MPI library, it must call MPI_Finialize. This
cleans up any “unfinished business” left by MPI - e.g. pending receives that were never
completed. So a typical MPI program has the following layout.

 .
 .
 .
 include 'mpif.h'
 .
 .
 .
 call MPI_Init(ierr)
 .
 .
 .
 call MPI_Finialize(ierr)
 .
 .
 .
 end program

2.2 Finding out About the Rest of the World

MPI provides the function MPI_Comm_rank, which returns the rank of a process in its second
in its second argument, Its syntax is

 CALL MPI_COMM_RANK(COMM, RANK, IERROR)
 INTEGER COMM, RANK, IERROR

The first argument is a communicator. Essentially a communicator is a collection of processes that
can send message to each other. For basic programs, the only communicator needed is
MPI_COMM_WORLD. It is predefined in MPI and consists of all the processes running when
program execution begins.

Many of the constructs in our programs also depend on the number of processes executing the
program. So MPI provides the functions MPI_Comm_size for determining this. Its first
argument is a communicator. It returns the number of processes in a communicator in its second
argument. Its syntax is

 CALL MPI_COMM_SIZE(COMM, P, IERROR)
 INTEGER COMM, P, IERROR

 6666

2.3 Message : Data + Envelope

The actual message-passing in our program is carried out by the MPI functions MPI_Send and
MPI_Recv. The first command sends a message to a designated process. The second receives a
message from a process. These are the most basic message-passing commands in MPI. In order
for the message to be successfully communicated the system must append some information to
the data that the application program wishes to transmit. This additional information forms the
envelope of the message. In MPI it contains the following information.

1. The rank of the receiver.

2. The rank of the sender.

3. A tag.

4. A communicator.

These items can be used by the receiver to distinguish among incoming messages. The source
argument can be used to distinguish messages received from different processes. The tag is a user-
specified integer that can be used to distinguish messages received form a single process. For
example, suppose process A is sending two messages to process B; both messages contains a
single real number. One of the real number is to be used in a calculation, while the other is to be
printed. In order to determine which is which, A can use different tags for the two messages. If B
uses the same two tags in the corresponding receives, when it receives the messages, it will
“know” what to do with them. MPI guarantees that the integers 0-32767 can be used as tags.
Most implementations allow much larger values.

As we noted above, a communicator is basically a collection of processes that can send messages
to each other. When two processes are communicating using MPI_Send and MPI_Recv, its
importance arises when separate modules of a program have been written independently of each
other. For example, suppose we wish to solve a system of differential equations, and, in the
course of solving the system, we need to solve a system of linear equation. Rather than writing the
linear system solver from scratch, we might want to use a library of functions for solving linear
systems that was written by someone else and that has been highly optimized for the system we’re
using. How do we avoid confusing the messages we send from process A to process B with those
sent by the library functions ? Before the advent of communicators, we would probably have to
partition the set of valid tags, setting aside some of them for exclusive use by the library functions.
This is tedious and it will cause problems if we try to run our program on another system : the
other system’s linear solver may not (probably won’t) require the same set of tags. With the
advent of communicators, we simply create a communicator that can be used exclusively by the
linear solver, and pass it as an argument in calls to the solver. We’ll discuss the details of this later.
For now, we can get away with using the predefined communicator MPI_COMM_WORLD. It
consists of all the processes running the program when execution begins.

 7777

2.4 MPI_Send and MPI_Recv

To summarize, let’s detail the syntax of MPI_Send and MPI_Recv.

 MPI_SEND(MESSAGE, COUNT, DATATYPE, DEST, TAG , COMM, IERROR)
 <TYPE> MESSAGE(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM, IERROR

 MPI_RECV(MESSAGE, COUNT, DATATYPE, SOURCE, T AG,
 COMM, STATUS, IERROR)
 <TYPE> MESSAGE(*)
 INTEGER COUNT, DATATYPE, DEST, TAG, COMM
 INTEGER STATUS(MPI_STATUS_SIZE),IERROR

Most MPI functions stores an integer error code in the argument ierror. However, we will ignore
these return values in most cases.

The contents of the message are stored in a block of memory referenced by the argument
message. The next two arguments, count and datatype, allow the system to identify the end
of the message : it contains a sequence of count values, each having MPI type datatype. This
type is not a Fortran type, although most of the predefined types correspond Fortran types. The
predefined MPI types and the corresponding FORTRAN types (if they exist) are listed in the
following table.

MPI datatype FORTRAN datatype

MPI_INTEGER INTEGER

MPI_REAL REAL

MPI_DOUBLE_PRECISION DOUBLE PRECISION

MPI_COMPLEX COMPLEX

MPI_LOGICAL LOGICAL

MPI_CHARACTER CHARACTER(1)

MPI_BYTE

MPI_PACKED

The last two types, MPI_BYTE and MPI_PACKED, don’t correspond to standard Fortran
types. The MPI_BYTE type can be used if you wish to force the system to perform no

 8888

conversion between different data representations (e.g. on a heterogeneous network of
workstations using different representations of data). We’ll discuss the type MPI_PACKED later.

Note that the amount of space allocated for the receiving buffer does not have to match the exact
amount of space in the message being received. For example, when our program is run, the size
of the message that process 1 sends, len_trim(message), is 28 characters, but process 0 receives
the message in a buffer that has storage for 100 characters. Thsi makes sense. In general, the
receiving process may not know the exact size of the message being sent. So MPI allows a
message to be received as long as there is sufficient storage allocated. If there isn’t sufficient
storage, an overflow error occurs [4].

The arguments dest and source are, respectively, the ranks of the receiving and the sending
processes. MPI allows source to be “wildcard”. There is a predefined constant
MPI_ANY_SOURCE that can be used if a process is ready to receive a message from any
sending process rather than a particular sending process. There is not a wildcard for dest.

As we noted erlier, MPI has two mechanisms specifically designed for “partitioning the message
space” : tags and communicators. The arguments tag and comm are, respectively, the tag and
communicator. The tag is an integer, and for now, our only communicator is
MPI_COMM_WORLD, which, as we noted earlier is predefined on all MPI systems and
consists of all the processes running when execution of the program begins. There is a wildcard,
MPI_ANY_TAG, that MPI_Recv can use for the tag. There is no wildcard for the
communicator. In other words, in order for process A to send a message to process B, the
argument comm that A uses in MPI_Send must be identical to the argument that B uses in
MPI_Recv.

The last argument of MPI_Recv, status, returns information on the data that was actually
received. It references a array with two elements - one for the source and one for the tags. So if,
for example, the source of the receive was MPI_ANY_SOURCE, then status will contain the
rank of the process that sent the message.

 9999

3. An Application
Now that we know how to send message with MPI, let’s write a program that uses message-
passing to calculate a definite integral with the trapezoid rule.

3.1 Serial program

Recall that the trapezoid rule estimates f x dx
a

b

()∫ by dividing the interval [a,b] into n segments of

equal and calculating the following sum.

h f x f x f xn i

i

n

[() / () / ()].0

1

1

2 2+ +
=

−

∑

Here, h = (b - a)/n, and xi = a + ih, i = 0,...,n.

By putting f(x) into a subprogram, we can write a serial program for calculating an integral using
the trapezoid rule.

C serial.f -- calculate definite integral using tra pezoidal
C rule.
C
C The function f(x) is hardwired.
C Input: a, b, n.
C Output: estimate of integral from a to b of f(x)
C using n trapezoids.

 PROGRAM serial
 IMPLICIT NONE 4
 real integral
 real a
 real b

4 In Fortran, if you omit to declare a variable it will not normally lead to an error when it is first used; instead it will be
implicitly declared to be an integer if the first letter of its name lies in the range I-N, and will be implicitly declared to be a
real variable otherwise. This is extremely dangerous, and must be avoided at all cost.

Fortunately, Fortran 90 provides the means to avoid this problem by instructing the compiler that all variables must be
declared before use, and that implicit declaration is not to be allowed. This is achieved by including the statement

 IMPLICIT NONE

as the first statement after the initial PROGRAM, SUBROUTINE or FUNCTION statement.

It is extremely important that this statement appears at the beginning of every program in order that implicit declarations of variables are
forbidden. There are a great many stories, some apocryphal and some true, about major catastrophes in Fortran programs that
would never have happened had implicit declaration not masked a programming error.

 10101010

 integer n
 real h
 real x
 integer i

 real f
 external f

 print *, 'Enter a, b, and n'
 read *, a, b, n

 h = (b-a)/n
 integral = (f(a) + f(b))/2.0
 x = a
 do i = 1 , n-1
 x = x + h
 integral = integral + f(x)
 enddo
 integral = integral*h

 print *,'With n =', n,' trapezoids, our estim ate'
 print *,'of the integral from ', a, ' to ',b, ' = ' ,
 +integral
 end

C** ****
 real function f(x)
 IMPLICIT NONE
 real x
C Calculate f(x).

 f = x*x
 return
 end
C** ****

3.2 Parallelizing the Trapezoid Rule

One approach to parallelizing this program is to simply split the interval [a,b] up among the
processes, and each process can estimate the integral of f(x) over its subinterval. In order to
estimate the total integral, the processes’ local calculations are added.

Suppose there are p processes and n trapezoids, and, in order to simplify the discussion, also
suppose that n is evenly divisible by p. Then it is natural for the first process to calculate the area
of the first n/p trapezoids, the second process to calculate the area of the next n/p, etc. So process
q will estimate the integral over the interval

 11111111

[, ()]a q
nh

p
a q

nh

p
+ + + 1

Thus each process needs the following information.

• The number of processes, p.

• Its rank.

• The entire interval of integration, [a,b].

• The number of subintervals, n.

Recall that the first two items can be found by calling the MPI functions MPI_Comm_size and
MPI_Comm_Rank. The latter two items should probably be input by the user. But this can
raise some difficult problems. So for our first attempt at calculating the integral, let’s “hardwire”
these values by simply setting their values with assignment statements.

A straightforward approach to summing the processes’ individual calculations is to have each
process send its local calculation to process 0 and have process 0 do the final addition.

With these assumptions we can write a parallel trapezoid rule program.

c trap.f -- Parallel Trapezoidal Rule, first versi on
c
c Input: None.
c Output: Estimate of the integral from a to b of f(x)
c using the trapezoidal rule and n trapezoids.
c
c Algorithm:
c 1. Each process calculates "its" interval of
c integration.
c 2. Each process estimates the integral of f(x)
c over its interval using the trapezoidal r ule.
c 3a. Each process != 0 sends its integral to 0 .
c 3b. Process 0 sums the calculations received from
c the individual processes and prints the r esult.
c
c Note: f(x), a, b, and n are all hardwired.
c

 program trapezoidal
c
 IMPLICIT NONE
 include 'mpif.h'
c
 integer my_rank ! My process rank.
 integer p ! The number of processes.

 12121212

 real a ! Left endpoint.
 real b ! Right endpoint.
 integer n ! Number of trapezoids.
 real h ! Trapezoid base length.
 real local_a ! Left endpoint for my pro cess.
 real local_b ! Right endpoint my proces s.
 integer local_n ! Number of trapezoids for my
 ! calculation.
 real integral ! Integral over my interva l.
 real total ! Total integral.
 integer source ! Process sending integal.
 integer dest ! All messages go to 0.
 integer tag
 integer status(MPI_STATUS_SIZE)
 integer ierr

 real Trap

 data a, b, n, dest, tag /0.0, 1.0, 1024, 0, 5 0/

C Let the system do what it needs to start up MPI.
 call MPI_INIT(ierr)

C Get my process rank.
 call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, i err)

C Find out how many processes are being used.
 call MPI_COMM_SIZE(MPI_COMM_WORLD, p, ierr)

 h = (b-a)/n ! h is the same for all pr ocesses.
 local_n = n/p ! So is the number of trap ezoids.

C Length of each process' interval of integration = local_n*h.
C So my interval starts at :
 local_a = a + my_rank*local_n*h
 local_b = local_a + local_n*h
 integral = Trap(local_a, local_b, local_n, h)

C Add up the integals calculated by each process.
 if (my_rank .EQ. 0) then
 total = integral
 do source = 1, p-1
 call MPI_RECV(integral, 1, MPI_REAL, source, tag,
 + MPI_COMM_WORLD, status, ierr)
 total = total + integral
 enddo
 else
 call MPI_SEND(integral, 1, MPI_REAL, dest ,
 + tag, MPI_COMM_WORLD, ierr)
 endif

 13131313

C Print the result.
 if (my_rank .EQ. 0) then
 write(6,200) n
 200 format(' ','With n = ',I4,' trapezoids, our estimate')
 write(6,300) a, b, total
 300 format(' ','of the integral from ',f6.2 ,' to ',f6.2,
 + ' = ',f11.5)
 endif

C Shut down MPI.
 call MPI_FINALIZE(ierr)
 end program trapezoidal

 real function Trap(local_a, local_b, local_n, h)
 IMPLICIT NONE
 real local_a
 real local_b
 integer local_n
 real h
 real integral ! Store result in intega l.
 real x
 real i

 real f

 integral = (f(local_a) + f(local_b))/2.0
 x = local_a
 do i = 1, local_n - 1
 x = x + h
 integral = integral + f(x)
 enddo
 integal = integral*h
 Trap = integral
 return
 end

 real function f(x)
 IMPLICIT NONE
 real x

 f = x*x
 end

 14141414

Observe that this program also uses the SPMD paradigm. Even though process 0 executes an
essentially different set of commands from the remaining processes, it still runs the same
program. The different commands are executed by branching based on the process rank.

3.3 I/O on Parallel Processors

One obvious problem with our program is its lack of generality : the data, a, b, and n, are
hardwired. The user should be able to enter these values during execution. Let’s look more
carefully at the problem of I/O on parallel machines.

In our greetings and trapezoid programs we assumed that process 0 could write to standard
output (the terminal screen). Most parallel processors provide this much I/O. In fact, most
parallel processors allow all processors to both read from standard input and write to standard
output. However difficult arise when several processes are simultaneously trying to execute I/O
functions. In order to understand this, let’s look at an example.

Suppose we modify the trapezoid program so that each process attempts to read the values a, b,
and n by adding the statement

 read *, a , b, n

Suppose also that we run the program with two processes and the user types in

 0 1 1024

What happen ? Do both processes get the data ? Does only one ? Or, even worse, does (say)
process 0 get the 0 and 1, while process 1 gets the 1024 ? If all the processes get the data, what
happens when we write a program, where we want process 0 gets the data, what happens to the
others ? Is it even reasonable to have multiple processes reading data from a single terminal ?

On the other hand, what happens if several processes attempt to simultaneously write data to the
terminal screen. Does the data from process 0 get printed first, then the data form process 1, etc ?
Or does the data appear in some random order ? Or, even worse, does the data from the different
processes get all mixed up - say, half a line from 0, two characters from 1, 3 characters from 0,
two lines from 2, etc ?

The standard I/O commands available in Fortran (and most other languages) don’t provide
simple solutions to these problems, and I/O continues to be the subject of considerable research
in the parallel processing community. So let’s look at some not so simple solutions to these
problems.

Thus far, we have assumed that process 0 can at least write to standard output. We will also
assume that it can read from standard input. In most cases, we will only assume that process 0 can
do I/O. It should be noted that this is a very weak assumption, since, as we noted most parallel

 15151515

machines allow multiple processes to carry out I/O.5 You might want to ask your local expert
whether there are any restrictions on which processes can do I/O.6

If only process 0 can do I/O, then we need for process 0 to send the user input to the other
processes. This is readily accomplished with a short I/O function that uses MPI_Send and
MPI_Recv.

C *** ****************
C Function Get_data
C Reads in the user input a, b, and n.
C Input arguments:
C 1. integer my_rank: rank of current proc ess.
C 2. integer p: number of processes.
C Output parameters:
C 1. real a: left endpoint a.
C 2. real b: right endpoint b.
C 3. integer n: number of trapezoids.
C Algorithm:
C 1. Process 0 prompts user for input and
C reads in the values.
C 2. Process 0 sends input values to other
C processes.
C
 subroutine Get_data(a, b, n, my_rank, p)
 IMPLICIT NONE
 real a
 real b
 integer n
 integer my_rank
 integer p
 INCLUDE 'mpif.h'
C
 integer source
 integer dest
 integer tag
 integer status(MPI_STATUS_SIZE)
 integer ierr
 data source /0/
C
 if (my_rank == 7 0) then
 print *, 'Enter a, b and n'

5 The MPI function MPI_Attr_get can determine the rank of a process that can carry out the usual I/O functions. See
[4]. But it is not important in our SP2.

6 In our SP2, this is controlled by the environment variable MP_STDINMODE. By default, all processes receive the same
input data from the keyboard (or standard input). See [8] for detail.

7 == means exactly the same as .EQ.

 16161616

 read *, a, b, n
C
C
 do dest = 1 , p-1
 tag = 0
 call MPI_SEND(a, 1, MPI_REAL , dest, tag,
 + MPI_COMM_WORLD, ierr)
 tag = 1
 call MPI_SEND(b, 1, MPI_REAL , dest, tag,
 + MPI_COMM_WORLD, ierr)
 tag = 2
 call MPI_SEND(n, 1, MPI_INTEGER, dest ,
 + tag, MPI_COMM_WORLD, ierr)
 enddo
 else
 tag = 0
 call MPI_RECV(a, 1, MPI_REAL , source, ta g,
 + MPI_COMM_WORLD, status, ierr)
 tag = 1
 call MPI_RECV(b, 1, MPI_REAL , source, ta g,
 + MPI_COMM_WORLD, status, ierr)
 tag = 2
 call MPI_RECV(n, 1, MPI_INTEGER, source, tag,
 + MPI_COMM_WORLD, status, ierr)
 endif
 return
 end
C
C
C
*** ***************

 17171717

4. Collective Communication
There are probably a few things in the trapezoid rule program that we can improve on. For
example, there is the I/O issue. There are also a couple of problems we haven’t discussed yet.
Let’s look at what happens when the program is run with eight processes.

All the processes begin executing the program (more or less) simulataneously. However, after
carrying out the basic set-up tasks (calls to MPI_Init, MPI_Comm_size, and MPI_Comm_rank),
processes 1-7 are idle while process 0 collects the input data. We don’t want to have idle
processes, but in view of our restrictions on which processes can read input data, the higher rank
processes must continue to wait while 0 sends the nput data to the lower rank processes. This
isn’t just an I/O issue. Notice that there is a similar inefficiency at the end of the program, when
process 0 does all the work of collecting andd adding the local integrals.

Of course, this is highly undesirable : the main point of parallel processing is to get multiple
processes to collaborate on solving a problem. If one of the processes is doing most of the work,
we might as well use a conventional, single-processor machine.

4.1 Tree-Structured Communication

Let’s try to improve our code. We’ll begin by focusing on the distribution of the input data. How
can we divide the work more evenly among the processes ? A natural solution is to imagine that
we have a tree of processes, with 0 at the root.

During the first stage of data distribution, 0 sends the data to (say) 4. During the next stage, 0
sends the data to 2, while 4 sends it to 6. During the last stage, 0 sends to 1, while 2 sends to 3, 4
sends to 5, and 6 sends to 7. (see figure 4.1) So we have reduced our input distribution loop from
7 stages to 3 stages. More generally, if we have p processes, this procedure allows us to distribute

the input data in log ()2 p 8stages, rather than p-1 stages, which, if p is large, is a huge savings.

8 The notation x denotes the smallest whole number grater than or equal to x.

 18181818

0 1

0

2 3

2

4 5

4

6 7

6

40

0

Figure 1 Processors configured as a tree

In order to modify the Get_data function to use a tree-structured distribution scheme, we need to

introduce a loop with log ()2 p stages. In order to implement the loop, each process needs to

calculate at each stage.

• whether it receives, and, if so, the source ; and

• whether it sends, and, if so, the destination.

As you can probably guess, these calculations can be a bit complicated, especially since there is no
canonical choice of ordering. In our example, we chose :

0sends to 4.

0 sends to 2, 4 sends to 6.

0 sends to 1, 2 sends to 3, 4 sends to 5, 6 sends to 7.

We might also have chosen (for example) :

0 sends to 1.

 19191919

0 sends to 2, 1 sends to 3.

0 sends to 4, 1 sends to 5, 2 sends to 6, 3 sends to 7.

Indeed, unless we know something about the underlying topology of our machine, we can’t really
decide which scheme is better.

So ideally we would prefer to use a function that has been specifically tailored to the machine
we’re using so that we won’t have to worry about all these tedious details, and we won’t have to
modify our code every time we change machines. As you may have guess, MPI provides such a
function.

4.2 Broadcast

A communication pattern that involves all the processes in a communicator is a collective
communication. As a consequence, a collective communication usually involves more than two
processes. A broadcast is a collective communication in which a single process sends the same data
top every process. In MPI the function for broadcasting data is MPI_Bcast :

MPI_BCAST(BUFFER, COUNT, DATATYPE, ROOT, COMM, IER ROR)
<type> BUFFER(*)
INTEGER COUNT, DATA, ROOT, COMM, IERROR

It simply sends a copy of the data in BUFFER on process ROOT to each process in the
communicator COMM. IT should be called by all the processes in the communicator with the
same arguments for ROOT and COMM. Hence a broadcast message cannot be received with
MPI_Recv. The parameters COUNT and DATATYPE have the same function that they have in
MPI_Send and MP_Recv : they specify the extent of the message. However, unlike the point-to-
point functions, MPI insists that in collective communication COUNT and DATATYPE be the
same on all the processes in the communicator [4]. The reason for this is that in some collective
operations (see below), a single process will receive data from many other processes, and in order
for a program to determine how much data has been received, it would need an entire array of
return statuses.

We can rewrite the Get_data function using MPI_Bcast as follows.

 subroutine Get_data2(a, b, n, my_rank)
 real a
 real b
 integer n
 integer my_rank
 integer ierr
 include 'mpif.h'
C
C
 if (my_rank .EQ. 0) then

 20202020

 print *, 'Enter a, b, and n'
 read *, a, b, n
 endif
C
 call MPI_BCAST(a, 1, MPI_REAL , 0, MPI_COMM_W ORLD, ierr)
 call MPI_BCAST(b, 1, MPI_REAL , 0, MPI_COMM_W ORLD, ierr)
 call MPI_BCAST(n, 1, MPI_INTEGER, 0, MPI_COMM _WORLD, ierr)
 end subroutine Get_data2
C
C
C
*** ***************

Certainly this version of Get_data is much more compact and readily comprehensible than the
original, and if MPI_Bcast has been optimized for your system, it will also be a good deal faster.

4.3 Reduce

In the trapezoid rule program after the input phase, every processor executes essentially the same
commands until the final summation phase. So unless our function f(x) is fairly complicated (i.e.,
it requires considerably more work to evaluate over certain parts of [a,b]), this part of the program
distributes the work equally among the processors. As we have already noted, this is not the case
with the final summation phase, when, once again, process 0 gets a disproportionate amount of
the work. However, you have probably already noticed that by reversing the arrows in figure 4.1,
we can use the same idea we used in section 4.1. That is, we can distribute the work of calculating
the sum among the processors as follows.

1. (a) 1 sends to 0, 3 sends to 2, 5 sends to 4, 7 sends to 6.

 (b) 0 adds its integral to that of 1, 2 adds its integral to that of 3, etc.

2. (a) 2 sends to 0, 6 sends to 4.

(b) 0 adds, 4 adds.

3. (a) 4 sends to 0.

(b) 0 adds.

Of course, we run into the same question that occurred when we were writing our own broadcast
: is this tree structure making optimal use of the topology of our machine ? Once again, we have
to answer that this depends on the machine. So, as before, we should let MPI do the work, by
using an optimized function.

The “global sum” that we wish to calculate is an example of a general class of collective
communication operations called reduction operations. In a global reduction operation, all the

 21212121

processes (in a communicator) contribute data which is combined using a binary operation.
Typical binary operations are addition, max, min, logical and, etc. The MPI function for
performing a reduction operation is

MPI_Reduce(OPERAND, RESULT, COUNT, DATATYEP, OP, RO OT, COMM,
IERROR)
<type> OPERAND(*), RESULT(*)
INTEGER COUNT, DATATYPE, OP, ROOT, COMM, IERROR

MPI_Reduce combines the operands stored in OPERAND using operation OP and stores the
result in RESULT on process ROOT. Both OPERAND and RESULT refer to COUNT
memory locations with type DATATYPE. MPI_Reduce must be called by all processes in the
communicator COMM, and COUNT, DATATYPE, and OP must be the same on each process.

The argument OP can take on one of the following predefined values.

Operation Name Meaning

MPI_MAX Maximum

MPI_MIN Minimum

MPI_SUM Sum

MPI_PROD Product

MPI_LAND Logical And

MPI_BAND Bitwise And

MPI_LOR Logical Or

MPI_BOR Bitwist Or

MPI_LXOR Logical Exclusive Or

MPI_BXOR Bitwise Exclusive Or

MPI_MAXLOC Maximum and Location of Maximum

MPI_MINLOC Minimum and Location of Minimum

It is also possible to define additional operations. For details see [4].

As an example, let’s rewrite the last few lines of the trapezoid rule program.

C Add up the integrals calculated by each process.

 22222222

 MPI_Reduce(INTEGRAL, TOTAL, 1, MPI_REAL, MPI _SUM, 0,
 + MPI_COMM_WORLD, ierr)
C Print the result.

Note that each processor calls MPI_Reduce with the same arguments. In particular, even though
total only has significance on process 0, each process must supply an argument.

4.4 Other Collective Communication
Functions

MPI supplies many other collective communication functions. We briefly enumerate some of
these here. For full details, see [4].

• MPI_Barrier(COMM, IERROR)
INTEGER COMM, IERROR

MPI_Barrier provides a mechanism for synchronizing all the processes in the communicator
comm. Each process blocks (i.e., pauses) until every process in comm has called MPI_Barrier.

MPI_Gather(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_BU F, RECV_COUNT,
RECV_TYPE, ROOT, COMM, IERROR)
<type>SEND_BUF(*), RECV_BUF(*)
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR

Each process in comm sends the contents of send_buf to process with rank root. The rpocess
root concatenates the received data in process rank order in recv_buf. That is, the data from
process 0 is followed by the data from process 1, which is followed by the data from process 2,
etc. The recv arguments are significant only on the process with rank root. The argument
recv_count indicates the number of items received from each process - not the total number
received.

MPI_Scatter(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV_B UF, RECV_COUNT,
RECV_TYPE, ROOT, COMM, IERROR)
<type>SEND_BUF(*), RECV_BUF(*)
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR

 23232323

The process with rank root distributes the contents of send_buf among the processes. The
contents of send_buf are split into p segments each consisting of send_count items. The first
segment goes to process 0, the second to process 1, etc. The send arguments are significant only
on process root.

MPI_Allgather(SEND_BUF, SEND_COUNT, SEND_TYPE, RECV _BUF,
RECV_COUNT, RECV_TYPE, ROOT, COMM, IERROR)
<type>SEND_BUF(*), RECV_BUF(*)
INTEGER SEND_COUNT,SEND_TYPE,RECV_COUNT, RECV_TYPE,ROOT,COMM,IERROR

MPI_Allgather gathers the contents of each send_buf on each process. Its effect is the same as if
there were a sequence of p calls to MPI_Gather, each of which has a different process acting as
root.

MPI_AllReduce(OPERAND, RESULT, COUNT, DATATYPE, OP, COMM, IERROR)
<type>OPERAND(*), RESULT(*)
INTEGER COUNT, DATATYPE, OP ,COMM,IERROR

MPI_Allreduce stores the result of the reduce operation OP in each process’ result buffer.

 24242424

5. Grouping Data for
Communication
With current generation machines sending a message is an expensive operation. So as a rule of
thumb, the fewer messages sent, the better the overall performance of the program. However, in
each of our trapezoid rule programs, when we distributed the input data, we sent a, b and n in
separate messages - whether we used MPI_Send and MPI_Recv or MPI_Bcast. So we should be
able to improve the performance of the program by sending the three input values in a single
message. MPI provides three mechanisms for grouping individual data items into a single
message : the count parameter to the various communication routines, derived datatypes, and
MPI_Pack / MPI_Unpack. We examine each of these options in turn.

5.1 The Count Parameter

Recall that MPI_Send, MPI_Recv, MPI_Bcast, and MPI_Reduce all have a count and a
datatype argument. These two parameters allow the user to group data items having the same
basic type into a single message. In order to use this, the grouped data items must be stored in
contiguous memory locations. Since Fortran guarantees that array elements are stored in contiguous
memory locations, if we wish to send the elements of an array, or a subset of an array, we can do
so in a single message. In fact, we’ve already done this in section 2, when we sent an array of
character.

As another example, suppose we wish to send the second half of a vector containing 100 real
numbers from process 0 to process 1.

 real vector(100)
 integer status(MPI_STATUS_SIZE)
 integer p, my_rank, ierr
 integer i
 .
 .
 .
 if (my_rank == 0) then
C Initialize vector and send.
 tag = 47
 count = 50
 dest = 1
 call MPI_SEND(vector(51), count, MPI_REAL , dest, tag,
 + MPI_COMM_WORLD, ierr)
 else
 tag = 47
 count = 50
 source = 0

 25252525

 call MPI_RECV(vector(51), count, MPI_REAL , source, tag,
 + MPI_COMM_WORLD, status, ier r)

 endif

Unfortunately, this doesn’t help us with the trapezoid rule program. The data we wish to
distribute to the other processes, a, b, and n, are stored in an array. So even if we declared them
one after the other in our program,

real a
real b
integer n

Fortran does not guarantee that they are stored in contiguous memory locations. One might be
tempted to store n as a float and put the three values in an array, but this would be poor
programming style and it wouldn’t address the fundamental issue. In order to solve the problem
we need to use one of MPI’s other facilities for grouping data.

5.2 Derived Types and MPI_Type_struct

It might seem that another option would be to store a, b, and n in a derived type9 with three
members - two reals and an integer - and try to use the datatype argument to MPI_Bcast. The
difficulty here is that the type of datatype is MPI_Datatype, which is an actual type itself - not the
same thing as a user-defined type in Fortran 90. For example, suppose we included the type
definition

 type INDATA_TYPE
 real a
 real b
 integer n
 end type

and the variable definition

 type (INDATA_TYPE) indata

Now if we call MPI_Bcast

 call MPI_Bcast(indata, 1, INDATA_TYPE, 0, MPI _COMM_WORLD,
 + ierror)

9 Type definition is available in FORTRAN 90. We may access individual variables in the derived type using the operator %.
E.g., indata%a = 1.0

 26262626

the program will fail. The detail depend on the implementation of MPI that you’re using. The
problem here is that MPI is a pre-existing library of functions. That is, the MPI functions were
written without knowledge of the datatypes that you define in your program. In particular, none
of the MPI functions “knows” about INDATA_TYPE.

MPI provides a partial solution to this problem, by allowing the user to build MPI datatypes at
execution time. In order to build an MPI datatype, one essentially specifies the layout of the data
in the type - the member types and their relative locations in memory. Such a type is called a MPI
derived data type. In order to see how this works, let’s write a function that will build a MPI derived
type.

 MODULE GLOBAL 10
 type INDATA_TYPE
 real a
 real b
 integer n
 end type INDATA_TYPE
 END MODULE GLOBAL

 subroutine Build_derived_type(indata, mesg_mp i_t)
 use GLOBAL 11
 INCLUDE 'mpif.h'
 IMPLICIT NONE

 type(INDATA_TYPE) indata
 integer mesg_mpi_t

 integer ierr

 integer block_lengths(3)
 integer displacements(3)
 integer address(4)
 integer typelist(3)

C Build a derived datatype consisting of two real and an integer.

C First specify the types.
 typelist(1) = MPI_REAL
 typelist(2) = MPI_REAL
 typelist(3) = MPI_INTEGER

C Specify the number of elements of each type.

10 MODULE is a new kind of Fortran 90 program unit. Any program unit may use the variables and type definition in a
module by the “USE” statement. This feature is intended to replace “common block” in Fortran 77 which is very
inconvenient.

11 Supra.

 27272727

 block_lengths(1) = 1
 block_lengths(2) = 1
 block_lengths(3) = 1

C Calculate the displacements of the members relat ive to indata.
 call MPI_Address(indata, address(1), ierr)
 call MPI_Address(indata%a, address(2), ierr)
 call MPI_Address(indata%b, address(3), ierr)
 call MPI_Address(indata%n, address(4), ierr)
 displacements(1) = address(2) - address(1)
 displacements(2) = address(3) - address(1)
 displacements(3) = address(4) - address(1)

C Build the derived datatype
 call MPI_TYPE_STRUCT(3, block_lengths, displa cements,
 + typelist, mesg_mpi_t, ierr)

C Commit it -- tell system we'll be using it for c ommunication.
 call MPI_TYPE_COMMIT(mesg_mpi_t, ierr)
 return
 end

The first three statements specify the types of the members of the MPI derived type, and the next
three specifies the number of elements of each type. The next four calculate the addresses of the
three members of indata. The next three statements use the calculated addresses to determine
the displacements of the three members relative to the address of the first - which is given
displacement 0. With this information, we know the types, sizes and relative locations of the
members of a variable having Fortran 90 type INDATA_TYPE, and hence we can define a
derived data type that corresponds to the Fortran type. This is done by calling the functions
MPI_Type_struct and MPI_Type_commit.

The newly created MPI datatype can be used in any of the MPI communication functions. In
order to use it, we simply use the starting address of a variable of type INDATA_TYPE as the
first argument, and the derived type in the datatype argument. For example, we could rewrite the
Get_data function as follows.

 subroutine Get_data3(indata, my_rank)
 use global
 type(INDATA_TYPE) indata
 integer my_rank
 integer mesg_mpi_t
 integer ierr
 include 'mpif.h'

 if (my_rank == 0) then
 print *, 'Enter a, b, and n'
 read *, indata%a, indata%b, indata%n

 28282828

 endif
 call Build_derived_type(indata, mesg_mpi_t)
 call MPI_BCAST(indata, 1, mesg_mpi_t, 0, MPI_ COMM_WORLD,
 +ierr)
 return
 end

To summarize, then, we can build general MPI derived datatypes by calling MPI_Type_struct.
The syntax is

 call MPI_TYPE_STRUCT(count, array_of_block_le ngths,
 +array_of_displacements, array_of_types, newty pe, ierror)
 integer count, array_of_block_lengths(*),
 integer array_of_displacements(*) , array_of_ types(*)
 integer array_of_types(*), newtype, ierror

The argument count is the number of elements in the derived type. It is also the size of the three
arrays, array_of_block_lengths, array_of_displacements, and array_of_types. The array
array_of_block_lengths contains the number of entries in each element of the type. So if an
element of the type is an array of m values, then the corresponding entry in
array_of_block_lengths is m. The array array_of_displacements contains the displacement
of each element from the beginning of the message, and the array array_of_types contains the
MPI datatype of each entry. The argument newtype returns a pointer to the MPI datatype
created by the call to MPI_Type_struct.

Note also that newtype and the entries in array_of_types all have type MPI_Datatype. So
MPI_Type_struct can be called recursively to build more complex derived datatypes.

5.3 Other Derived Datatype Constructors

MPI_Type_struct is the most general datatype constructor in MPI, and as a consequence, the
user must provide a complete description of each element of the type. If the data to be transmitted
consists of a subset of the entries in an array, we shouldn't need to provide such detailed
information, since all the elements have the same basic type. MPI provides three derived
datatype constructors for dealing with this situation: MPI_Type_Contiguous,
MPI_Type_vector and MPI_Type_indexed. The first constructor builds a derived type
whose elements are contiguous entries in an array. The second builds a type whose elements are
equally spaced entries of an array, and the third builds a type whose elements are arbitrary entries
of an array. Note that before any derived type can be used in communication it must be committed
with a call to MPI_Type_commit.

Details of the syntax of the additional type constructors follow.

 29292929

 MPI_Type_contiguous(count, oldtype, newtype, ierror)
 integer count, oldtype, newtype, ierror

MPI_Type_contiguous creates a derived datatype consisting of count elements of type
oldtype. The elements belong to contiguous memory locations.

 MPI_Type_vector(count, block_length, stride,
 +element_type, newtype, ierror)
 integer count, blocklength, stride oldtype, n ewtype, ierror

MPI_Type_vector creates a derived type consisting of count elements. Each element contains
block_length entries of type element_type. Stride is the number of elements of type
element_type between successive elements of new_type.

 MPI_Type_indexed(count, array_of_block_length s,
 +array_of_displacements, element_type, newtype , ierror
 integer count, array_of_block_lengths(*),
 +array_of_displacements, element_type, newtype , ierror

MPI_Type_indexed creates a derived type consisting of count elements. The ith element (i =
1, ..., count), consists of array_of_block_lengths[i] entries of type element_type, and it is
displaced array_of_displacements[i] units of type element_type from the beginning of
newtype.

5.4 Pack/Unpack

An alternative approach to grouping data is provided by the MPI functions MPI_Pack and
MPI_Unpack. MPI_Pack allows one to explicitly store noncontiguous data in contiguous
memory locations, and MPI_Unpack can be used to copy data from a contiguous buffer into
noncontiguous memory locations. In order to see how they are used, let's rewrite Get_data one
last time.

 subroutine Get_data4(a, b, n, my_rank)
 real a
 real b
 integer n
 integer my_rank
C
 INCLUDE 'mpif.h'
 integer ierr
 character buffer(100)
 integer position
C in the buffer
C
 if (my_rank .EQ. 0) then
 print *,'Enter a, b, and n'

 30303030

 read *, a, b, n
C
C Now pack the data into buffer. Position = 0
C says start at beginning of buffer.
 position = 0
C
C Position is in/out
 call MPI_PACK(a, 1, MPI_REAL , buffer, 10 0,
 + position, MPI_COMM_WORLD, ierr)
C Position has been incremented: it now refer-
C ences the first free location in buffer.
C
 call MPI_PACK(b, 1, MPI_REAL , buffer, 10 0,
 + position, MPI_COMM_WORLD, ierr)
C Position has been incremented again.
C
 call MPI_PACK(n, 1, MPI_INTEGER, buffer, 100,
 + position, MPI_COMM_WORLD, ierr)
C Position has been incremented again.
C
C Now broadcast contents of buffer
 call MPI_BCAST(buffer, 100, MPI_PACKED, 0 ,
 + MPI_COMM_WORLD, ierr)
 else
 call MPI_BCAST(buffer, 100, MPI_PACKED, 0 ,
 + MPI_COMM_WORLD, ierr)
C
C Now unpack the contents of buffer
 position = 0
 call MPI_UNPACK(buffer, 100, position, a , 1,
 + MPI_REAL , MPI_COMM_WORLD, ierr)
C Once again position has been incremented:
C it now references the beginning of b.
C
 call MPI_UNPACK(buffer, 100, position, b , 1,
 + MPI_REAL , MPI_COMM_WORLD, ierr)
 call MPI_UNPACK(buffer, 100, position, n , 1,
 + MPI_INTEGER, MPI_COMM_WORLD, ierr)
 endif
 return
 end
C

In this version of Get_data process 0 uses MPI_Pack to copy a to buffer and then append b
and n. After the broadcast of buffer, the remaining processes use MPI_Unpack to successively
extract a, b, and n from buffer. Note that the datatype for the calls to MPI_Bcast is
MPI_PACKED.

The syntax of MPI_Pack is

 31313131

 MPI_Pack(pack_data, in_count, datatype, buff er, size,
 +position_ptr, comm, ierror)
 <type> pack_data(*), buffer(*)
 integer in_count, datatype, size, position_pt r, comm, ierror

The parameter pack_data references the data to be buffered. It should consist of in_count
elements, each having type datatype. The parameter position_ptr is an in/out parameter. On
input, the data referenced by pack_data is copied into memory starting at address buffer +
position_ptr. On return, position_ptr references the first location in buffer after the data that
was copied. The parameter size contains the size in bytes of the memory referenced by buffer,
and comm is the communicator that will be using buffer.

The syntax of MPI_Unpack is

 MPI_Unpack(buffer, size, position_ptr, unpack _data,
 +count, datatype, comm, ierror)
 <type> inbuf(*), outbuf(*)
 integer insize, position, outcount, datatype, comm, ierror

The parameter buffer references the data to be unpacked. It consists of size bytes. The
parameter position_ptr is once again an in/out parameter. When MPI_Unpack is called, the
data starting at address buffer + position_ptr is copied into the memory referenced by
unpack_data. On return, position_ptr references the first location in buffer after the data that
was just copied. MPI_Unpack will copy count elements having type datatype into
unpack_data. The communicator associated with buffer is comm.

5.5 Deciding Which Method to Use

If the data to be sent is stored in consecutive entries of an array, then one should simply use the
count and datatype arguments to the communication function(s). This approach involves no
additional overhead in the form of calls to derived datatype creation functions or calls to
MPI_Pack/MPI_Unpack.

If there are a large number of elements that are not in contiguous memory locations, then
building a derived type will probably involve less overhead than a large number of calls to
MPI_Pack/MPI_Unpack.

If the data all have the same type and are stored at regular intervals in memory (e.g., a column of a
matrix), then it will almost certainly be much easier and faster to use a derived datatype than it will
be to use MPI_Pack/MPI_Unpack. Furthermore, if the data all have the same type, but are
stored in irregularly spaced locations in memory, it will still probably be easier and more efficient
to create a derived type using MPI_Type_indexed. Finally, if the data are heterogeneous and
one is repeatedly sending the same collection of data (e.g., row number, column number, matrix
entry), then it will be better to use a derived type, since the overhead of creating the derived type

 32323232

is incurred only once, while the overhead of calling MPI_Pack/MPI_Unpack must be incurred
every time the data is communicated.

This leaves the case where one is sending heterogeneous data only once, or very few times. In
this case, it may be a good idea to collect some information on the cost of derived type creation
and packing/unpacking the data. For example, on an nCUBE 2 running the MPICH
implementation of MPI, it takes about 12 milliseconds to create the derived type used in
Get_data3, while it only takes about 2 milliseconds to pack or unpack the data in Get_data4.
Of course, the saving isn't as great as it seems because of the asymmetry in the pack/unpack
procedure. That is, while process 0 packs the data, the other processes are idle, and the entire
function won't complete until both the pack and unpack are executed. So the cost ratio is
probably more like 3:1 than 6:1.

There are also a couple of situations in which the use of MPI_Pack and MPI_Unpack is
preferred. Note first that it may be possible to avoid the use of system buffering with pack, since
the data is explicitly stored in a user-defined buffer. The system can exploit this by noting that the
message datatype is MPI_PACKED. Also note that the user can send “variable-length”'
messages by packing the number of elements at the beginning of the buffer. For example,
suppose we want to send rows of a sparse matrix. If we have stored a row as a pair of arrays ---
one containing the column subscripts, and one containing the corresponding matrix entries --- we
could send a row from process 0 to process 1 as follows.

 PROGRAM SpaRow
 INCLUDE 'mpif.h'
 integer HUGE
 parameter (HUGE = 100)
 integer p
 integer my_rank
 real entries(10)
 integer column_subscripts(10)
 integer nonzeroes
 integer position
 integer row_number
 character buffer *100
 integer status(MPI_STATUS_SIZE)
 integer ierr
 integer i
 data nonzeroes /10/
C
 call MPI_INIT(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, p, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
C
 if (my_rank .EQ. 0) then
C Get the number of nonzeros in the row.
C Initialize entries and column_subscripts
 do i = 1, nonzeroes
 entries(i) = 2*i

 33333333

 column_subscripts(i) = 3*i
 enddo
C
C Now pack the data and send
 position = 1
 call MPI_PACK(nonzeroes, 1, MPI_INTEGER, buffer, HUGE,
 + position, MPI_COMM_WORLD, ierr)
 call MPI_PACK(row_number, 1, MPI_INTEGER , buffer, HUGE,
 + position, MPI_COMM_WORLD, ierr)
 call MPI_PACK(entries, nonzeroes, MPI_REA L , buffer,
 + HUGE, position, MPI_COMM_WORLD, ier r)
 call MPI_PACK(column_subscripts,nonzeroes ,MPI_INTEGER,
 + buffer, HUGE, position, MPI_COMM_WO RLD, ierr)
 call MPI_SEND(buffer, position, MPI_PACKE D, 1, 0,
 + MPI_COMM_WORLD, ierr)
 else
 call MPI_RECV(buffer, HUGE, MPI_PACKED, 0 , 0,
 + MPI_COMM_WORLD, status, ierr)
 position = 1
 call MPI_UNPACK(buffer, HUGE, position, nonzeroes,
 + 1, MPI_INTEGER, MPI_COMM_WORLD, ierr)
 call MPI_UNPACK(buffer, HUGE, position, row_number,
 + 1, MPI_INTEGER, MPI_COMM_WORLD, ierr)
 call MPI_UNPACK(buffer,HUGE, position, e ntries,
 + nonzeroes, MPI_REAL , MPI_COMM_WORLD , ierr)
 call MPI_UNPACK(buffer, HUGE, position,
 + column_subscripts,
 + nonzeroes, MPI_INTEGER, MPI_COMM_WOR LD, ierr)
 do i = 1, nonzeroes
 print *, entries(i), column_subscript s(i)
 enddo
 endif
C
 call MPI_FINALIZE(ierr)
 end

 34343434

6. Communicators and Topologies
The use of communicators and topologies makes MPI different from most other message-
passing systems. Recollect that, loosely speaking, a communicator is a collection of processes that
can send messages to each other. A topology is a structure imposed on the processes in a
communicator that allows the processes to be addressed in different ways. In order to illustrate
these ideas, we will develop code to implement Fox's algorithm for multiplying two square
matrices.

6.1 Fox's Algorithm

We assume that the factor matrices A = (aij) and B = (bij) have order n. We also assume that the

number of processes, p, is a perfect square, whose square root evenly divides n. Say p = q2, and n
= n/q. In Fox's algorithm the factor matrices are partitioned among the processes in a block
checkerboard fashion. So we view our processes as a virtual two-dimensional q x q grid, and each

process is assigned an n xn submatrix of each of the factor matrices. More formally, we have a
mapping

φ:{ , ,..., } {(,): , }0 1 1 0 1p s t s t q− → ≤ ≤ −

that is both one-to-one and onto. This defines our grid of processes: process i belongs to the row

and column given by φ ()i . Further, the process with rank φ −1(,)s t is assigned the submatrices

A

a a

a a

st

s n t n s n t n

s n t n s n t n

=

+ −

+ − + − + −

* , * * ,()*

()* , * ()* ,()*

....

....

....

1 1

1 1 1 1 1 1

,

and

B

b b

b b

st

s n t n s n t n

s n t n s n t n

=

+ −

+ − + − + −

* , * * ,()*

()* , * ()* ,()*

....

....

....

1 1

1 1 1 1 1 1

.

For example, if p = 9, φ()x = (x/3, x mod 3), and n = 6, then A would be partitioned as follows.

Process 0 Process 1 Process 2

 35353535

A
a a

a a00

00 01

10 11

=

 A

a a

a a01

02 03

12 13

=

 A

a a

a a02

04 05

14 15

=

Process 3

A
a a

a a10

20 21

30 31

=

Process 4

A
a a

a a11

22 23

32 33

=

Process 5

A
a a

a a12

24 25

34 35

=

Process 6

A
a a

a a20

40 41

50 51

=

Process 7

A
a a

a a21

42 43

52 53

=

Process 8

A
a a

a a22

44 45

54 55

=

In Fox's algorithm, the block submatrices, Ars and Bst, s = 0, 1, , q - 1, are multiplied and

accumulated on process φ −1(,)r t . The basic algorithm is:

 do step = 0, q - 1
1. Choose a submatrix of A from each row of process es.
2. In each row of processes broadcast the submatrix

chosen in that row to the other processes in that r ow.
3. On each process, multiply the newly received sub matrix

of A by the submatrix of B currently residing on th e
process.

4. On each process, send the submatrix of B to the
process directly above. (On processes in the first row,
send the submatrix to the last row.)

 enddo

The submatrix chosen in the rth row is Ar,u, , where

u = (r + step) mod q.

6.2 Communicators

If we try to implement Fox's algorithm, it becomes apparent that our work will be greatly
facilitated if we can treat certain subsets of processes as a communication universe --- at least on a
temporary basis. For example, in the pseudo-code

2. In each row of processes broadcast the submatrix chosen in
that row to the other processes in that row.

it would be useful to treat each row of processes as a communication universe, while in the
statement

 36363636

4. On each process, send the submatrix of B to the process
directly above. (On processes in the first row, sen d the
submatrix to the last row.)

it would be useful to treat each column of processes as a communication universe.

The mechanism that MPI provides for treating a subset of processes as a “communication'”
universe is the communicator. Up to now, we've been loosely defining a communicator as a
collection of processes that can send messages to each other. However, now that we want to
construct our own communicators, we will need a more careful discussion.

In MPI, there are two types of communicators: intra-communicators and inter-communicators.

Intra-communicators are essentially a collection of processes that can send messages to each
other and engage in collective communication operations. For example, MPI_COMM_WORLD
is an intra-communicator, and we would like for each row and each column of processes in Fox's
algorithm to form an intra-communicator. Inter-communicators, as the name implies, are used
for sending messages between processes belonging to disjoint intra-communicators. For example,
an inter-communicator would be useful in an environment that allowed one to dynamically create
processes: a newly created set of processes that formed an intra-communicator could be linked
to the original set of processes (e.g., MPI_COMM_WORLD) by an inter-communicator. We
will only discuss intra-communicators. The interested reader is referred to [4] for details on the
use of inter-communicators.

A minimal (intra-)communicator is composed of

• a Group, and

• a Context.

A group is an ordered collection of processes. If a group consists of p processes, each process in
the group is assigned a unique rank, which is just a nonnegative integer in the range 0, 1, , p - 1.
A context can be thought of as a system-defined tag that is attached to a group. So two processes
that belong to the same group and that use the same context can communicate. This pairing of a
group with a context is the most basic form of a communicator. Other data can be associated to a
communicator. In particular, a structure or topology can be imposed on the processes in a
communicator, allowing a more natural addressing scheme. We'll discuss topologies in section
6.5.

 37373737

6.3 Working with Groups, Contexts, and
Communicators

To illustrate the basics of working with communicators, let's create a communicator whose
underlying group consists of the processes in the first row of our virtual grid. Suppose that

MPI_COMM_WORLD consists of p processes, where q2 = p. Let's also suppose thatφ ()x =

(x/q, x mod q). So the first row of processes consists of the processes with ranks 0, 1,, q - 1.
(Here, the ranks are in MPI_COMM_WORLD.) In order to create the group of our new
communicator, we can execute the following code.

 PROGRAM ComCrt
 INCLUDE 'mpif.h'
 IMPLICIT NONE
 integer, parameter 12 :: MAX_PROCS = 100
 integer p
 real p_real
 integer q
 integer my_rank
 integer MPI_GROUP_WORLD
 integer first_row_group
 integer first_row_comm
 integer process_ranks(0:MAX_PROCS-1)
 integer proc
 integer test
 integer sum
 integer my_rank_in_first_row
 integer ierr
C
C
 test = 0
 call MPI_INIT(ierr)
 call MPI_COMM_SIZE(MPI_COMM_WORLD, p, ierr)
 call MPI_COMM_RANK(MPI_COMM_WORLD, my_rank, ierr)
C
 p_real = p
 q = sqrt(p_real)
C
C Make a list of the processes in the new communic ator.
 do proc = 0, q-1
 process_ranks(proc) = proc
 enddo
C
C Get the group underlying MPI_COMM_WORLD
 call MPI_COMM_GROUP(MPI_COMM_WORLD, MPI_GROUP _WORLD, ierr)

12 An integer with the attribute “parameter” means it is a integer symbolic constant and cannot be changed at run time.

 38383838

C
C Create the new group
 call MPI_GROUP_INCL(MPI_GROUP_WORLD, q, proce ss_ranks,
 + first_row_group, ierr)
C
C Create the new communicator
 call MPI_COMM_CREATE(MPI_COMM_WORLD, first_ro w_group,
 + first_row_comm, ierr)
C

This code proceeds in a fairly straightforward fashion to build the new communicator. First it
creates a list of the processes to be assigned to the new communicator. Then it creates a group
consisting of these processes. This required two commands: first get the group associated with
MPI_COMM_WORLD, since this is the group from which the processes in the new group will
be taken; then create the group with MPI_Group_incl. Finally, the actual communicator is
created with a call to MPI_Comm_create. The call to MPI_Comm_create implicitly
associates a context with the new group. The result is the communicator first_row_comm. Now
the processes in first_row_comm can perform collective communication operations. For
example, process 0 (in first_row_group) can broadcast A00 to the other processes in
first_row_group.

 integer my_rank_in_first_row
 real, allocatable 13 , dimension(:,:) 14 :: 15 A_00

 if (my_rank < q) then
 call MPI_COMM_RANK(first_row_comm,
 + my_rank_in_first_row, ierr)
 ! Allocate space for A_00, order n_bar.
 allocate (A_00(n_bar,n_bar)) 16
 if (my_rank_in_first_row == 0) then
 ! initialize A_00
 endif
 call MPI_BCAST(A_00, n_bar*n_bar, MPI_IN TEGER, 0,
 + first_row_comm, ierr)
 endif

13 Allocatable is an attribute of a variable. It means that the array can be dynamically allocated at run time.

14 “dimension(:, :)” means the array is two dimensional and the size of the two dimension is unknown at compile time. The
array have to be allocated at run time.

15 :: is a separator between variable attributes and variable names.

16 The function “Allocate “ allocates memory space for an allocatable array.

 39393939

Groups and communicators are opaque objects. From a practical standpoint, this means that the
details of their internal representation depend on the particular implementation of MPI, and, as a
consequence, they cannot be directly accessed by the user. Rather the user accesses a handle that
references the opaque object, and the opaque objects are manipulated by special MPI functions,
for example, MPI_Comm_create, MPI_Group_incl, and MPI_Comm_group.

Contexts are not explicitly used in any MPI functions. Rather they are implicitly associated with
groups when communicators are created. The syntax of the commands we used to create
first_row_comm is fairly self-explanatory. The first command

 MPI_Comm_group(comm, group, ierror)
 integer comm, group, ierror

simply returns the group underlying the communicator comm.

The second command

 MPI_Group_incl(old_group, new_group_size,
 +ranks_in_old_group, new_group, ierror)
 integer old_group, new_group_size,
 integer ranks_in_old_group(*), new_group, ier ror

creates a new group from a list of processes in the existing group old_group. The number of
processes in the new group is new_group_size, and the processes to be included are listed in
ranks_in_old_group. Process 0 in new_group has rank ranks_in_old_group(0) in
old_group, process 1 in new_group has rank ranks_in_old_group(1) in old_group, etc.

The final command

 MPI_Comm_create(old_comm, new_group, new_comm , ierror)
 integer old_comm, new_group, new_comm, ierror

associates a context with the group new_group and creates the communicator new_comm. All
of the processes in new_group belong to the group underlying old_comm.

There is an extremely important distinction between the first two functions and the third.
MPI_Comm_group and MPI_Group_incl, are both local operations. That is, there is no
communication among processes involved in their execution. However, MPI_Comm_create is
a collective operation. All the processes in old_comm must call MPI_Comm_create with the
same arguments. The Standard [4] gives three reasons for this:

1. It allows the implementation to layer MPI_Comm_create on top of regular collective
communications.

2. It provides additional safety.

3. It permits implementations to avoid communication related to context creation.

 40404040

Note that since MPI_Comm_create is collective, it will behave, in terms of the data
transmitted, as if it synchronizes. In particular, if several communicators are being created, they
must be created in the same order on all the processes.

6.4 MPI_Comm_split

In our matrix multiplication program we need to create multiple communicators --- one for each
row of processes and one for each column. This would be an extremely tedious process if p were
large and we had to create each communicator using the three functions discussed in the previous
section. Fortunately, MPI provides a function, MPI_Comm_split that can create several
communicators simultaneously. As an example of its use, we'll create one communicator for each
row of processes.

 integer my_row_comm
 integer my_row

C my_rank is rank in MPI_COMM_WORLD.
C q*q = p
 my_row = my_rank/q
 call MPI_COMM_SPLIT(MPI_COMM_WORLD, my_row, m y_rank,
 + my_row_comm, ierr)

The single call to MPI_Comm_split creates q new communicators, all of them having the same
name, my_row_comm. For example, if p = 9, the group underlying my_row_comm will
consist of the processes 0, 1, and 2 on processes 0, 1, and 2. On processes 3, 4, and 5, the group
underlying my_row_comm will consist of the processes 3, 4, and 5, and on processes 6, 7, and 8
it will consist of processes 6, 7, and 8.

The syntax of MPI_Comm_split is

 MPI_COMM_SPLIT(old_comm, split_key, rank_key,
 + new_comm, ierror)
 integer old_comm, split_key, rank_key, new_co mm, ierror

It creates a new communicator for each value of split_key. Processes with the same value of
split_key form a new group. The rank in the new group is determined by the value of
rank_key. If process A and process B call MPI_Comm_split with the same value of
split_key, and the rank_key argument passed by process A is less than that passed by process
B, then the rank of A in the group underlying new_comm will be less than the rank of process
B. If they call the function with the same value of rank_key, the system will arbitrarily assign
one of the processes a lower rank.

MPI_Comm_split is a collective call, and it must be called by all the processes in old_comm.
The function can be used even if the user doesn't wish to assign every process to a new

 41414141

communicator. This can be accomplished by passing the predefined constant
MPI_UNDEFINED as the split_key argument. Processes doing this will have the predefined
value MPI_COMM_NULL returned in new_comm.

6.5 Topologies

Recollect that it is possible to associate additional information --- information beyond the group
and context --- with a communicator. This additional information is said to be cached with the
communicator, and one of the most important pieces of information that can be cached with a
communicator is a topology. In MPI, a topology is just a mechanism for associating different
addressing schemes with the processes belonging to a group. Note that MPI topologies are virtual
topologies --- there may be no simple relation between the process structure defined by a virtual
topology, and the actual underlying physical structure of the parallel machine.

There are essentially two types of virtual topologies that can be created in MPI --- a cartesian or grid
topology and a graph topology. Conceptually, the former is subsumed by the latter. However,
because of the importance of grids in applications, there is a separate collection of functions in
MPI whose purpose is the manipulation of virtual grids.

In Fox's algorithm we wish to identify the processes in MPI_COMM_WORLD with the
coordinates of a square grid, and each row and each column of the grid needs to form its own
communicator. Let's look at one method for building this structure.

We begin by associating a square grid structure with MPI_COMM_WORLD. In order to do
this we need to specify the following information.

1. The number of dimensions in the grid. We have 2.

2. The size of each dimension. In our case, this is just the number of rows and the number of
columns. We have q rows and q columns.

3. The periodicity of each dimension. In our case, this information specifies whether the first
entry in each row or column is “adjacent” to the last entry in that row or column,
respectively. Since we want a “circular”' shift of the submatrices in each column, we want the
second dimension to be periodic. It's unimportant whether the first dimension is periodic.

4. Finally, MPI gives the user the option of allowing the system to optimize the mapping of the
grid of processes to the underlying physical processors by possibly reordering the processes in
the group underlying the communicator. Since we don't need to preserve the ordering of the
processes in MPI_COMM_WORLD, we should allow the system to reorder.

Having made all these decisions, we simply execute the following code.

 integer grid_comm
 integer dim_sizes(0:1)

 42424242

 logical wrap_around(0:1)
 logical reorder 17 = .TRUE.

 dim_sizes(0) = q
 dim_sizes(1) = q
 wrap_around(0) = .TRUE.
 wrap_around(1) = .TRUE.
 call MPI_CART_CREATE(MPI_COMM_WORLD, 2, dim_s izes,
 + wrap_around, reorder, grid_comm, ierr)

After executing this code, the communicator grid_comm will contain all the processes in
MPI_COMM_WORLD (possibly reordered), and it will have a two-dimensional cartesian
coordinate system associated. In order for a process to determine its coordinates, it simply calls
the function MPI_Cart_coords :

 integer coordinates(0:1)
 integer my_grid_rank

 call MPI_COMM_RANK(grid_comm, my_grid_rank, ierr)
 call MPI_CART_COORDS(grid_comm, my_grid_rank, 2,
 + coordinates, ierr)

Notice that we needed to call MPI_Comm_rank in order to get the process rank in
grid_comm. This was necessary because in our call to MPI_Cart_create we set the reorder
flag to .TRUE. , and hence the original process ranking in MPI_COMM_WORLD may have
been changed in grid_comm.

The “inverse”' to MPI_Cart_coords is MPI_Cart_rank.

 call MPI_CART_RANK(grid_comm, coordinates, gr id_rank,
 + ierr)
 integer grid_comm, coordinates(*), grid_rank, ierr

Given the coordinates of a process, MPI_Cart_rank returns the rank of the process in its third
parameter process_rank.

The syntax of MPI_Cart_create is

 call MPI_CART_CREATE(old_comm, number_of_dims , dim_sizes,
 + periods, reorder, cart_comm, ierror)
 integer old_comm, number_of_dims, dim_sizes(*)
 logical periods(*), reorder
 integer cart_comm, ierror

17 This syntax initialize the variable.

 43434343

MPI_Cart_create creates a new communicator, cart_comm by caching a cartesian topology
with old_comm. Information on the structure of the cartesian topology is contained in the
parameters number_of_dims, dim_sizes, and periods. The first of these,
number_of_dims, contains the number of dimensions in the cartesian coordinate system. The
next two, dim_sizes and periods, are arrays with order equal to number_of_dims. The array
dim_sizes specifies the order of each dimension, and periods specifies whether each dimension
is circular or linear.

The processes in cart_comm are ranked in row-major order. That is, the first row consists of
processes 0, 1, , dim_sizes(0)-1, the second row consists of processes dim_sizes(0),
dim_sizes(0)+1, , 2*dim_sizes(0)-1, etc. Thus it may be advantageous to change the relative
ranking of the processes in old_comm. For example, suppose the physical topology is a 3 x 3 grid,
and the processes (numbers) in old_comm are assigned to the processors (grid squares) as
follows.

3 4 5

0 1 2

6 7 8

Clearly, the performance of Fox's algorithm would be improved if we re-numbered the processes.
However, since the user doesn't know what the exact mapping of processes to processors is, we
must let the system do it by setting the reorder parameter to .TRUE. .

Since MPI_Cart_create constructs a new communicator, it is a collective operation.

The syntax of the address information functions is

 MPI_Cart_rank(comm, coordinates, rank, ierror)
 integer comm, coordinates(*), rank, ierror

 MPI_Cart_coords(comm, rank, number_of_dims, c oordinates,
 + ierror)
 integer comm, rank, number_of_dims, coordinat es(*), ierror

MPI_Cart_rank returns the rank in the cartesian communicator comm of the process with
cartesian coordinates coordinates. So coordinates is an array with order equal to the number
of dimensions in the cartesian topology associated with comm. MPI_Cart_coords is the
inverse to MPI_Cart_rank: it returns the coordinates of the process with rank rank in the
cartesian communicator comm. Note that both of these functions are local.

 44444444

6.6 MPI_Cart_sub

We can also partition a grid into grids of lower dimension. For example, we can create a
communicator for each row of the grid as follows.

 logical varying_coords(0:1)
 integer row_comm

 varying_coords(0) = .FALSE.
 varying_coords(1) = .TRUE.
 call MPI_CART_SUB(grid_comm, varying_coords, row_comm, ierr)

The call to MPI_Cart_sub creates q new communicators. The varying_coords argument is an
array of boolean. It specifies whether each dimension “belongs” to the new communicator. Since
we're creating communicators for the rows of the grid, each new communicator consists of the
processes obtained by fixing the row coordinate and letting the column coordinate vary. Hence
we assigned varying_coords(0) the value .FALSE. --- the first coordinate doesn't vary --- and
we assigned varying_coords(1) the value .TRUE. --- the second coordinate varies. On each
process, the new communicator is returned in row_comm. In order to create the
communicators for the columns, we simply reverse the assignments to the entries in
varying_coords.

 integer col_comm

 varying_coords(0) = .TRUE.
 varying_coords(1) = .FALSE.
 call MPI_CART_SUB(grid_comm, varying_coords, ro w_comm, ierr)

Note the similarity of MPI_Cart_sub to MPI_Comm_split. They perform similar functions --
- they both partition a communicator into a collection of new communicators. However,
MPI_Cart_sub can only be used with a communicator that has an associated cartesian topology,
and the new communicators can only be created by fixing (or varying) one or more dimensions
of the old communicators. Also note that MPI_Cart_sub is, like MPI_Comm_split, a
collective operation.

6.7 Implementation of Fox's Algorithm

To complete our discussion, let's write the code to implement Fox's algorithm. First, we'll write a
function that creates the various communicators and associated information. Since this requires a
large number of variables, and we'll be using this information in other functions, we'll put it into a
Fortran 90 derived type to facilitate passing it among the various functions.

Notice that since each of our communicators has an associated topology, we constructed them
using the topology construction functions --- MPI_Cart_create and MPI_Cart_sub --- rather

 45454545

than the more general communicator construction functions MPI_Comm_create and
MPI_Comm_split.

 program myfox
 include 'mpif.h'
 IMPLICIT NONE
 type GRID_INFO_TYPE
 integer p ! Total number of proces ses.
 integer comm ! Communicator for the e ntire grid.
 integer row_comm ! Communicator for my ro w.
 integer col_comm ! Communicator for my co l.
 integer q ! Order of grid.
 integer my_row ! My row number.
 integer my_col ! My column number.
 integer my_rank ! My rank in the grid co mmunicator.
 end type GRID_INFO_TYPE

 TYPE (GRID_INFO_TYPE) :: grid_info
 integer my_rank, ierr
 real, allocatable, dimension(:,:) :: A,B,C
 integer n, n_bar

 call MPI_INIT(ierr)
 call Setup_grid(grid_info)

 call MPI_Comm_rank(MPI_COMM_WORLD, my_rank, i err)
 if (my_rank == 0) then
 print *, 'What is the order of the matric es?'
 read *, n
 endif

 call MPI_BCAST(n,1,MPI_INTEGER, 0, MPI_COMM_W ORLD,ierr)
 n_bar = n/(grid_info%q)
 ! Allocate local storage for local matrix.
 allocate(A(n_bar,n_bar))
 allocate(B(n_bar,n_bar))
 allocate(C(n_bar,n_bar))

 A = 1.0 18
 B = 2.0
 call Fox(n,grid_info,A,B,C,n_bar)
 print *, C

 contains 19

18 This is Fortran 90 array syntax. It assigns every element of array A to be 1.0 .

19 In Fortran 90, it is permissible to include a procedure as an integral part of a program unit. The program unit can invoke
the internal procedure. This inclusion is done by the statement “contains”.

 46464646

 subroutine Setup_grid(grid)
 TYPE (GRID_INFO_TYPE), intent(inout) 20 :: grid

 integer old_rank
 integer dimensions(0:1)
 logical periods(0:1)
 integer coordinates(0:1)
 logical varying_coords(0:1)
 integer ierr

 ! Set up Global Grid Information.
 call MPI_Comm_size(MPI_COMM_WORLD, grid%p , ierr)
 call MPI_Comm_rank(MPI_COMM_WORLD, old_ra nk, ierr)
 grid%q = int(sqrt(dble(grid%p)))
 dimensions(0) = grid%q
 dimensions(1) = grid%q
 periods(0) = .TRUE.
 periods(1) = .TRUE.
 call MPI_Cart_create(MPI_COMM_WORLD, 2,
 + dimensions, periods, .TRUE. , grid%c omm, ierr)
 call MPI_Comm_rank (grid%comm, grid%my_r ank, ierr)
 call MPI_Cart_coords(grid%comm, grid%my_r ank, 2,
 + coordinates, ierr)
 grid%my_row = coordinates(0)
 grid%my_col = coordinates(1)

 ! Set up row and column communicators.
 varying_coords(0) = .FALSE.
 varying_coords(1) = .TRUE.
 call MPI_Cart_sub(grid%comm,varying_coord s,
 + grid%row_comm,ierr)
 varying_coords(0) = .TRUE.
 varying_coords(1) = .FALSE.
 call MPI_Cart_sub(grid%comm,varying_coord s,
 + grid%col_comm,ierr)
 end subroutine Setup_grid

 subroutine Fox(n,grid,local_A,local_B,loca l_ C,n_bar)
 integer, intent(in) :: n, n _bar
 TYPE(GRID_INFO_TYPE), intent(in) :: grid
 real, intent(in) , dimension(:,:) :: loca l_A, local_B
 real, intent(out), dimension (:,:) :: loc al_C

 real temp_A(SIZE(A,DIM=1),SIZE(A,DIM=2))
 integer step, source, dest, request
 integer status(MPI_STATUS_SIZE), bcast_ro ot

20 intent(inout) is an attribute of dummy argument. It informs the compiler that this dummy argument may be used for read
and write inside the subroutine.

 47474747

 local_C = 0.0
 source = mod((grid%my_row + 1), grid%q)
 dest = mod((grid%my_row + grid%q -1), (grid%q))
 temp_A = 0.0

 do step = 0, grid%q -1
 bcast_root = mod((grid%my_row + step), (grid%q))
 if (bcast_root == grid%my_col) then
 call MPI_BCAST(local_A,n_bar*n_ba r,MPI_REAL,
 + bcast_root, grid%row_comm, i err)
 call sgemm('N','N',n_bar,n_bar,n_ bar,1.0,
 + local_A,n_bar,local_B,n_bar,1.0,local_C,n_ba r)
 else
 call MPI_BCAST(temp_A,n_bar*n_bar ,MPI_REAL,
 + bcast_root, grid%row_comm, i err)
 call sgemm('N','N',n_bar,n_bar,n_ bar,1.0,
 + temp_A,n_bar,local_B,n_bar,1. 0,local_C,n_bar)
 endif
 call MPI_Send(local_B,n_bar*n_bar,MPI_REA L,dest, 0,
 + grid%col_comm, ierr)
 call MPI_Recv(local_B,n_bar*n_bar,MPI_REA L,source,0,
 + grid%col_comm, status, ierr)

 enddo
 end subroutine Fox

 end program myfox

 48484848

7. Where To Go From Here

7.1 What We Haven't Discussed

MPI is a large library. The Standard [4] is over 200 pages long and it defines more than 125
functions. As a consequence, this Guide has covered only a small fraction of MPI, and many
readers will fail to find a discussion of functions that they would find very useful in their
applications. So we briefly list some of the more important ideas in MPI that we have not
discussed here.

1. Communication Modes. We have used only the standard communication mode for
send. This means that it is up to the system to decide whether the message is
buffered. MPI provides three other communication modes: buffered, synchronous, and
ready. In buffered mode, the user explicitly controls the buffering of outgoing
messages. In synchronous mode, a send will not complete until a matching receive is
posted. In ready mode, a send may be started only if a matching receive has already
been posted. MPI provides three additional send functions for these modes.

2. Nonblocking Communication. We have used only blocking sends and receives
(MPI_Send and MPI_Recv.) For the send, this means that the call won't return
until the message data and envelope have been buffered or sent --- i.e., until the
memory referenced in the call to MPI_Send is available for re-use. For the receive,
this means that the call won't return until the data has been received into the memory
referenced in the call to MPI_Recv. Many applications can improve their
performance by using nonblocking communication. This means that the calls to
send/receive may return before the operation completes. For example, if the
machine has a separate communication processor, a non-blocking send could
simply notify the communication processor that it should begin composing and
sending the message. MPI provides nonblocking sends in each of the four modes
and a nonblocking receive. It also provides various utility functions for determining
the completion status of a non-blocking operation.

3. Inter-communicators. Recollect that MPI provides two types of communicators:
intra-communicators and inter-communicators. Inter-communicators can be used
for point-to-point communications between processes belonging to distinct intra-
communicators.

There are many other functions available to users of MPI. If we haven't discussed a facility you
need, please consult the Standard [4] to determine whether it is part of MPI.

 49494949

7.2 Implementations of MPI

If you don't have an implementation of MPI, there are three versions that are freely available by
anonymous ftp from the following sites.

• Argonne National Lab/Mississippi State University. The address is
info.mcs.anl.gov, and the directory is pub/mpi.

• Edinburgh University. The address is ftp.epcc.ed.ac.uk, and the directory is
pub/chimp/release.

• Ohio Supercomputer Center. The address is tbag.osc.edu, and the directory is
pub/lam.

All of these run on networks of UNIX workstations. The Argonne/Mississippi State and
Edinburgh versions also run on various parallel processors. Check the “README” files to see if
your machine(s) are supported.

7.3 More Information on MPI

There is an MPI FAQ available by anonymous ftp at

• Mississippi State University. The address is ftp.erc.msstate.edu, and the file is
pub/mpi/faq.

There are also numerous web pages devoted to MPI. A few of these are

• http://www.epm.ornl.gov/~walker/mpi. The Oak Ridge National Lab MPI web
page.

• http://www.erc.msstate.edu/mpi. The Mississippi State MPI web page.

• http://www.mcs.anl.gov/mpi. The Argonne MPI web page.

Each of these sites contains a wealth of information about MPI. Of particular note, the
Mississippi State page contains a bibliography of papers on MPI, and the Argonne page contains
a collection of test MPI programs.

The MPI Standard [4] is currently available from each of the sites above. This is, of course, the
definitive statement of what MPI is. So if you're not clear on something, this is the final arbiter. It
also contains a large number of nice examples of uses of the various MPI functions. So it is
considerably more than just a reference. Currently, several members of the MPI Forum are
working on an annotated version of the MPI standard [5].

 50505050

The book [2] is a tutorial introduction to MPI. It provides numerous complete examples of MPI
programs.

The book [6] contains a tutorial introduction to MPI (on which this guide is based). It also
contains a more general introduction to parallel processing and the programming of message-
passing machines.

The Usenet newsgroup, comp.parallel.mpi, provides information on updates to all of these
documents and software.

7.4 The Future of MPI

As it is currently defined, MPI fails to specify two critical concepts: I/O and the
creation/destruction of processes. Work has already been started on the development of both
I/O facilities and dynamic process creation. Information on the former can be obtained from
http://lovelace.nas.nasa.gov/MPI-IO/mpi-io.html, and information on the latter can be
found on the Argonne MPI web page. Significant developments are invariably posted to
comp.parallel.mpi.

 51515151

8. Compiling and Running MPI
Programs
This section is intended to give the outline of how to compile and run a program in the IBM SP2.

MPI program written in Fortran or Fortran 90 can be compiled using the following command :

mpif77 program.f

By default, the program will be running on 4 processors of the SP2. The program can be invoked
by the name of executable

a.out

The number of processes is controled by the environment variable MP_PROCS. The web page
http://www.hku.hk/cc/sp2/technical/setenv.html has manuals for setting the environment
variable.

 52525252

9. Reference
[1] Geoffrey Fox, et al., Solving Problems on Concurrent Processors, Englewood Cliffs, NJ, Prentice--
Hall, 1988.

[2] William Gropp, Ewing Lusk, and Anthony Skjellum, Using MPI: Portable Parallel Programming
with the Message-Passing Interface, Cambridge, MA, MIT Press, 1994.

[3] Brian W. Kernighan and Dennis M. Ritchie, The C Programming Language, 2nd ed., Englewood
Cliffs, NJ, Prentice--Hall, 1988.

[4] Message Passing Interface Forum, MPI: A Message-Passing Interface Standard, International
Journal of Supercomputer Applications, vol 8, nos 3/4, 1994. Also available as Technical Report
CS-94-230, Computer Science Dept., University of Tennessee, Knoxville, TN, 1994.

[5] Steve Otto, et al., MPI Annotated Reference Manual, Cambridge, MA, MIT Press, to appear.

[6] Peter S. Pacheco, Programming Parallel with MPI, San Francisco, CA, Morgan Kaufmann. 1997.

[7] Peter S. Pacheco, A User’s Guide to MPI, 1995.

